

RELAZIONE GEOLOGICA (D.M. 17/01/18 - R.R. n. 26/20 e ss.mm.ii.)

TITOLO DEL PROGETTO

Progettazione definitiva, esecutiva, coordinamento della sicurezza in fase di progettazione e esecuzione e direzione lavori dell'intervento: DPCM 25 maggio 2016 - Parco Circolare Diffuso - Intervento 15 - completamento pista ciclabile presso Ponte Cavallotti.

COMUNE DI RIETI

COMMITTENTE:

Comune di Rieti

PROVINCIA DI RIETI

PROGETTISTI:

Geom. Pierluigi Rosati Ing. Domenico Rosati Mancini & Partners srl

GEOLOGO:

Geol. Roberto Seri

COMMESSA	EMISSIONE	REVISIONE	COLLABORATORE
AA 061-21	01	-	Geol. Serena De Piccoli Geol. Edoardo Seri
Roberto Seri geologo consulenze geologicheOrdine Geologi del Lazio n. 838			
🕋 Via della Chimica snc - Rieti 🛛 🕜 3290586415 🛛 🤷 geologo.robertoseri@gmail.com - sirius@epap.sicurezz			go.robertoseri@gmail.com - sirius@epap.sicurezzapostale.it
P.I. 01215570571 - SRERRT64L25L117T			

DATA:

Febbraio 2022

SOMMARIO

1 PREMESSA	4
2 RIFERIMENTI CARTOGRAFICI E GEOGRAFICI	6
3 INQUADRAMENTO GEOLOGICO-GEOMORFOLOGICO	8
4 GEOLOGIA E GEOMORFOLOGIA DI DETTAGLIO	11
5 PROGRAMMA DI INDAGINE	24
6 SONDAGGI GEOGNOSTICI	24
6.1 Modalità di esecuzione dei sondaggi geognostici	24
6.2 Modalità di esecuzione delle prove SPT	25
6.3 Modalità di prelievo dei campioni di terreno	26
6.4 Sondaggio geognostico S1	26
6.4.1 Prove penetrometriche dinamiche (SPT) in foro di sondaggio S1	28
6.4.2 Campione S1-C1	28
6.4.3 Campione S1-C2	29
6.4.4 Campione S1-C3	30
6.5 Sondaggio geognostico S2	32
6.5.1 Prove penetrometriche dinamiche (SPT) in foro di sondaggio S2	33
6.5.2 Campione S2-C1	34
7 PROVE PENETROMETRICHE DINAMICHE SUPERPESANTI DPSH	35
7.1 Prova penetrometrica dinamica superpesante DPSH1	35
7.2 Prova penetrometrica dinamica superpesante DPSH2	36
8 MODELLO GEOLOGICO E PARAMETRI GEOTECNICI	37
9 INDAGINI GEOFISICHE INDIRETTE	39
9.1 Indagini geofisiche indirette tipo MASW	39
9.1.1 Prova geofisica MASW 1	40
9.1.2 Prova geofisica MASW 2	42
9.2 Misura di rumore sismico ambientale	44
9.2.1 Strumentazione impiegata	45
9.2.2 Risultati dell'indagine HVSR1	45
9.2.3 Risultati dell'indagine HVSR2	47
10INDAGINE GEOFISICA DIRETTA DOWN-HOLE	49
10.1 Strumentazione utilizzata	49
10.2 Introduzione	50

10.3 Procedura sperimentale	51
10.4 Interpretazione in down hole con il metodo diretto	51
10.5 Interpretazione in down hole con il metodo intervallo	52
10.6 Risultati Down Hole	54
11 SISMICITA' E CATEGORIA DI SOTTOSUOLO	
11.1 Sismicità storica del Comune di Rieti	60
11.2 Categoria di sottosuolo dalle prove geofisiche	
12 POTENZIALITA' DI LIQUEFAZIONE DEI DEPOSITI	
12.1 Punto 1 - Accelerazioni massime attese	69
12.2 Punto 2 - Profondità media stagionale della falda	
12.3 Punto 3 - Resistenze penetrometriche normalizzate	
12.4 Punto 4 - Distribuzione granulometrica	71
13 RISPOSTA SISMICA LOCALE	
13.1 Premessa	
13.2 Azione sismica di progetto - Definizione del periodo di ritorno	77
13.3 Azione sismica di progetto - Pericolosità sismica di base	
13.4 Estrazione degli accelerogrammi di input	80
13.4.1 Accelerogrammi di input – SLV	
13.4.2 Accelerogrammi di input – SLD	
13.4.3 Accelerogrammi di input – SLO	
13.5 Morfologia dell'area e sezione topografica selezionata	85
13.6 Modello geologico-sismostratigrafico e risultati	85
13.7 Risultati	87
13.7.1 SLV – Risultati normalizzazione totale	
13.7.2 SLV – Risultati normalizzazione parziale	
13.7.3 SLD – Risultati normalizzazione totale	
13.7.4 SLD – Risultati normalizzazione parziale	
13.7.5 SLO – Risultati normalizzazione totale	
13.7.6 SLO – Risultati normalizzazione parziale	
14MODELLO GEOLOGICO E CONSIDERAZIONI CONCLUSIVE	
16BIBLIOGRAFIA E SITOGRAFIA	

Allegati:

- 1) Corografia, scala 1: 25.000
- 2) Corografia, scala 1: 10.000
- 3) Carta geologica, scala 1: 2.500
- 4) Ubicazione indagini
- Indagini e prove eseguite secondo le disposizioni dell'Allegato C al Regolamento Regionale n. 26 del 26/10/2020 e ss.mm.ii.
- 6) Modello geologico del sottosuolo alla scala 1:250 Sezione A-A'
- 7) Modello geologico del sottosuolo alla scala 1:250 Sezione B-B'

1 PREMESSA

La presente relazione geologica è redatta a corredo della progettazione definitiva- esecutiva per l'intervento: *Dpcm 25 Maggio 2016 - Parco Circolare Diffuso - Intervento 15 - Completamento Pista Ciclabile* da eseguirsi presso il Ponte Cavallotti (Figura 1).

Figura 1: Foto satellitare e localizzazione dell'area d'interesse.

Scopo del presente lavoro è definire i lineamenti geologici e geomorfologici dell'area, con particolare riguardo alla stratigrafia ed alla definizione del modello geologico del sottosuolo ottenendo la modellazione sismica del sito.

Il lavoro è redatto in ottemperanza al <u>D.M. 17/01/2018</u> ed ai sensi <u>del</u> <u>Regolamento regionale 26 Ottobre 2020 n. 26 e ss.mm.ii.</u> "Regolamento regionale per la semplificazione e l'aggiornamento delle procedure per l'esercizio delle funzioni in materia di previsione del rischio sismico. Abrogazione del regolamento regionale 13 luglio 2016, n. 14 e successive modifiche".

Al fine di ottenere la modellazione geologico-sismica del sottosuolo, tale regolamento prevede che si eseguano indagini e prove minime di tipo geologico, geofisico e geognostico per i diversi livelli di vulnerabilità dell'opera.

In base al Capitolo 2.4.2 "Classi d'uso" del D.M. 17/01/2018, l'opera in oggetto è attribuibile alla **classe d'uso III** - *Costruzioni il cui uso preveda affollamenti significativi.*

Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso.

Essendo l'edificio ubicato nel Comune di Rieti classificato come zona sismica **2B**, il livello di vulnerabilità dell'opera è **medio**, come riportato nella Tabella 1.

Γ		PERICO	LOSITA'		
h	Zona Sismica				
PROGETTI	1	2a	2b	3a	3b
classi d'uso I e II	MEDIO	MEDIO	MEDIO	BASSO	BASSO
classe d'uso III	ALTO	ALTO	MEDIO	MEDIO	MEDIO
classe d'uso IV	ALTO	ALTO	ALTO	MEDIO	MEDIO

Tabella 1: Livello di Vulnerabilità dell'opera in base al R. R. n. 26 del 26/10/2020 e ss.mm.ii.

È stato possibile definire le indagini di tipo geologico e geotecnico minime da eseguire in base ai seguenti criteri previsti dall'allegato C del regolamento regionale (Tabella 2).

Tabella 2: Elenco delle indagini e prove minime obbligatorie per opere con livello di vulnerabilità medio in base al R. R. n. 26 del 26/10/2020 e ss.mm.ii.

6

Al fine di determinare l'assetto stratigrafico e sismico dei terreni di sedime degli interventi in oggetto, è stato condotto un accurato rilevamento geologico dei luoghi e sono state eseguite le seguenti indagini geotecniche e geofisiche:

- N°1 sondaggio geognostico a carotaggio continuo (S1) spinto fino alla profondità di -30.00 m e attrezzato a Down Hole;
- N°1 sondaggio geognostico a carotaggio continuo (S2) spinto fino alla profondità di -15.00 m;
- N°4 prove penetrometriche dinamiche SPT in foro di sondaggio, di cui n°2 eseguite entro il foro di sondaggio S1 e n°2 eseguite entro il foro di sondaggio S2;
- N°4 campioni di terreno prelevati in maniera indisturbata da sottoporre alle analisi di laboratorio geotecnico, di cui N°3 prelevati durante la perforazione del sondaggio geognostico S1 e N°1 prelevato durante la perforazione del sondaggio geognostico S2;
- N°2 prove geofisiche indirette MASW;
- N°2 misure di rumore sismico ambientale HVSR;
- N°1 prova geofisica diretta Down Hole.

Per l'ubicazione delle prove si farà riferimento all'Allegato 4) Ubicazione indagini.

Inoltre dato che la struttura rientra nella classe d'uso III, verrà eseguito uno **studio di risposta sismica locale 1D**, per verificare se il moto sismico, relativo ad una formazione rocciosa di base (R), subisce delle modifiche in ampiezza, durata e contenuto in frequenza attraversando gli strati di terreno sovrastanti fino alla superficie libera (S).

2 RIFERIMENTI CARTOGRAFICI E GEOGRAFICI

Ponte Cavallotti è situato su quote variabili fra 394-396 slm e si colloca nel settore centrale del territorio comunale di Rieti.

Si tratta di un'infrastruttura a due campate lunga circa 83 m costruita all'inizio del Novecento su parte del vecchio tracciato della Via Salaria che in questo tratto del suo sviluppo cinge il centro storico di Rieti.

Figura 2: Vista del Ponte Cavallotti.

Da un punto di vista cartografico il sito di studio è inserito nella Tavoletta II SE del foglio n°138 – Rieti della Carta d'Italia IGM in scala 1:25.000.

Nella Carta Tecnica Regionale in scala 1: 10.000 l'area in oggetto si colloca nella Tavoletta n°347150 – Rieti Nord, mentre nella Carta Tecnica Regionale in scala 1: 5.000 si colloca nella Tavoletta n°347153.

Per l'inquadramento geologico-geomorfologico è stato utilizzato uno stralcio non in scala del Foglio 138 - Terni della Carta Geologica d'Italia, alla scala 1: 100.000 (Progetto Carg-Ispra), le cartografie redatte nell'ambito della Microzonazione Sismica di Livello 3 di Rieti e la carta geomorfologica da PRG del Comune di Rieti.

Le coordinate geografiche circa corrispondenti al centro di Ponte Cavallotti sono le seguenti:

> Coordinate WGS84: Lat: 42.402581°; Long: 12.871518° Coordinate ED50: Lat: 42.403557°; Long: 12.872443°

3 INQUADRAMENTO GEOLOGICO-GEOMORFOLOGICO

Il sito in esame si colloca all'interno della piana Reatina, una depressione intramontana Quaternaria di origine tettonica estesa circa 90 km². L'area è delimitata a N e a E dalle propaggini occidentali del gruppo montuoso del Terminillo, mentre nel settore occidentale e meridionale è bordata dai versanti orientali della catena dei Monti Sabini.

La genesi della piana reatina è legata all'instaurazione di un regime tettonico estensionale, successivo ad una precedente fase compressiva, che ha portato alla strutturazione dell'orogene Appenninico. Il modello geodinamico ipotizzato prevede che, dal Tortoniano superiore – Messiniano, la fase tettonica a carattere distensivo avrebbe coinvolto le zone interne dell'orogene, seguendo la migrazione dei fronti compressivi verso est fino ad interessare il bacino reatino nel Plio-Pleistocene [Merla, 1951; Trevisan, 1952; Sestini, 1970; Boccaletti &Guazzone, 1974; Elter et al.,1975].

Dagli studi di carattere geologico-strutturale (Cavinato et al., 1989) emerge che il bacino di Rieti, visibile in Figura 3, si è formato all'interno di un'estesa depressione disposta con asse NNW–SSE ed è bordato lungo il lato orientale da un elemento strutturale a carattere distensivo, avente direzione N140°-160° e attivatosi probabilmente lungo la zona di intersezione tra il dominio di transizione Umbro-Sabino e quello di piattaforma Laziale-Abruzzese [Cavinato et al., 1989; 1993].

Nel territorio comunale di Rieti si possono distinguere tre unità litostratigrafiche, costituite dal substrato geologico carbonatico, dai depositi continentali plio-quaternari e dai travertini.

Di età Meso-Cenozoica, il substrato nel bacino reatino è costituito da una successione di litotipi calcareo-silico-marnosi appartenenti alla serie Umbro-Sabina, interessata a vari livelli da notevoli quantità di materiale detritico, anche grossolano, qualitativamente e quantitativamente variabili spostandosi dalle zone più prossime alla piattaforma carbonatica laziale-abruzzese verso le aree interne del bacino.

Figura 3: Schema geologico-strutturale dell'Italia Centrale con localizzazione dell'area di studio. Legenda 1- depositi marini continentali del Plio-Pleistocene e coperture alluvionali recenti; 2vulcaniti (Pleistocene); 3- depositi terrigeni sintettonici (Formazione del Cellino, Pliocene inferiore); 4- depositi terrigeni sintettonici (Formazione di Argilloso-arenacea, Tortoniano superiore p.p. - Messiniano superiore); 5- depositi terrigeni sintettonici (Formazione di Frosinone, Tortoniano superiore p.p); 6- depositi terrigeni sintettonici (Formazione Marnosoarenacea, Burdigaliano p.p - Langhiano); 7- successione stratigrafica in facies di transizione (Triassico superiore-Miocene inferiore); 8- successione stratigrafica in facies di piattaforma carbonatica (Triassico superiore-Miocene medio); 9- faglia diretta; 10- faglia transtensiva; 11faglia con cinematica complessa; 12- faglia trascorrente; 13- sovrascorrimento; 14retroscorrimento. [Cipollari et Alii, 1995].

La formazione delle unità del substrato, infatti, è avvenuta in un ambiente paleogeografico di transizione, prossimo o coincidente con la rampa di raccordo tra il bacino Umbro-Marchigiano e la piattaforma Laziale-Abruzzese. Il substrato geologico carbonatico è affiorante nel margine orientale della piana di Rieti ed è disarticolato da una serie di sovrascorrimenti in affioramento parzialmente sulla dorsale orientale dei Monti Sabini.

Per quanto concerne l'assetto del bedrock Meso-Cenozoico all'interno della piana, è stato evidenziato da analisi gravimetriche (Figura 4) la presenza di faglie normali che, disarticolando le formazioni carbonatiche del substrato, hanno indotto la formazione di una depressione depocentrale avente direzione N-S, colmata successivamente da conglomerati villafranchiani e da depositi fluvio-lacustri Plio-Pleistocenici, per uno spessore di circa 400 m.

Figura 4: Sezioni ad andamento Est-Ovest del modello strutturale del bacino di Rieti risultante dall'elaborazione dei dati gravimetrici in cui è possibile visualizzare i rapporti tra il substrato in facies Umbro-Sabina e i depositi di riempimento del bacino [Ciccolella et alii, 1995]. Legenda: 1-Substrato Meso-Cenozoico in facies Umbro-sabina; 2- Conglomerati villafranchiani; 3- Depositi fluvio-lacustri; 4- Faglie e sovrascorrimenti.

Durante il Villafranchiano inferiore, la sedimentazione è caratterizzata da un'elevata energia idrodinamica, portando allo sviluppo di grossi apparati di *alluvial fan* lungo il margine orientale della piana. Tali condizioni di sedimentazione perdurarono fino a quando si assiste ad una progressiva attenuazione del tasso di subsidenza del bacino, dovuto probabilmente ad un periodo di relativa quiescenza tettonica del settore della catena.

Nel Villafranchiano superiore, importanti cambiamenti paleogeografici nel bacino come il sollevamento regionale, l'attività tettonica lungo la *master fault*, la subsidenza hanno modificato la sedimentazione. A causa della progressiva diminuzione del gradiente topografico, l'ambiente deposizionale passa da *alluvial fan* ad uno di piana alluvionale e con condizioni fluvio-lacustri.

Tra il Villafranchiano e il Pleistocene superiore, nuovi e significativi processi tettonici interessarono, dapprima, una porzione limitata della piana, per poi ampliarsi fino a modificarne l'intero assetto paleogeografico. In questo arco temporale si assiste infatti ad una ripresa dell'attività tettonica estensionale. A fasi di marcata subsidenza seguono fasi di stasi, testimoniate da variazioni del livello lacustre (depositi lacustri) e da terrazzi fluviali (conglomerati rielaborati) e migrazione assiale dei canali fluviali legata alla progradazione delle conoidi alluvionali [Alexander & Leeder, 1987; Leeder et al., 1988]. Nell'ultima parte del Quaternario si attenuano le fasi tettoniche e inizia il modellamento delle varie superfici deposizionali con un abbassamento progressivo del

11

livello lacustre, fino ai limiti attuali [Ferrelli et al., 1992]. Oltre che dalla attività tettonica, la morfogenesi della Conca Reatina è stata fortemente condizionata dalla variazione delle condizioni climatiche, che, nel corso del Quaternario, hanno vincolato l'entità dei processi erosivi e deposizionali, la sedimentazione e il terrazzamento nelle valli fluviali, la regolarizzazione dei versanti, lo sviluppo delle coperture vegetali e l'erosione del suolo e, soprattutto, l'accrescimento e l'erosione di imponenti placche di travertino.

Dal Pleistocene medio fino all'Olocene l'evoluzione morfologica della Piana Reatina è stata controllata, infatti, dallo sviluppo lungo la valle del Fiume Velino di sbarramenti naturali di travertino. La formazione delle placche di travertino avviene sotto condizioni climatiche caldo-umide, comportando lo sbarramento dei corsi d'acqua e la relativa sedimentazione di depositi sabbioso-limoso-calcarei di ambiente fluviale-lacustre e palustre, i quali risultano essere interdigitati con travertini stromatolitici e fitotermali nel bacino a monte. Le condizioni climatiche fredde e aride, viceversa, hanno favorito la reincisione degli sbarramenti travertinosi; conseguentemente, si è verificato un repentino approfondimento dei fondivalle, di cui quello avvenuto nell'ultimo periodo glaciale (circa 18.000 anni fa) rappresenta la manifestazione più recente [Scarascia et Alii, 2013].

4 GEOLOGIA E GEOMORFOLOGIA DI DETTAGLIO

Il sito d'interesse si localizza nel settore centrale del territorio comunale di Rieti ed è delimitato a nord dal centro storico cittadino e dal quartiere Piazza Tevere, ad est dalla località Cappuccini e a sud dalla località Campomoro. Il ponte rappresenta l'attraversamento del Fiume Velino e la prosecuzione della SS4 Salaria ed è situato a quote comprese fra 394-396 m slm.

Il sito in studio è ubicato al margine meridionale della piana reatina e, in particolare, in prossimità del settore dove è avvenuta la deposizione dei depositi travertinosi con intercalazioni di sedimenti colluviali e alluvionali contenenti materiale vulcanico di età compresa tra 180 e 30 ka. Tali depositi sarebbero da ricondurre alla generazione di un'antica soglia di sbarramento attribuibile al Pleistocene superioremedio (80-180 ka), mentre la porzione superiore coprirebbe gran parte dell'ultimo glaciale (60-30 ka) (Carrara et ali., 1992).

Sulla base delle caratteristiche geologiche e geomorfologiche derivanti da un'analisi di dettaglio cartografica e dall'elaborazione delle prove in situ è stato elaborato l'Allegato 3) mantenendo come base la carta tecnica regionale.

Come è illustrato dallo stralcio del Foglio 138 - "Terni" della Carta Geologica d'Italia alla scala 1: 100.000 riportato in Figura 5, il sito di indagine è localizzato al passaggio fra i *travertini*, da litoidi a terrosi, in bancate, talvolta con intercalazioni sabbioso-argillose, le *alluvioni fluviali recenti terrazzate e le alluvioni fluvio-lacustri*.

Figura 5: Carta Geologia D'Italia 1:100.000, Foglio 138-Terni e relativa legenda. Non in Scala.

Per uno studio maggiormente accurato e dettagliato dell'area è stata consultata la Carta Geomorfologica del Comune di Rieti, Foglio Nord (di cui si riporta un estratto in Figura 6) e la Carta Geologico-Tecnica redatta nell'ambito dello studio di MS3 di Rieti (Figura 7).

Figura 6: Stralcio della carta geomorfologica da PRG del Comune di Rieti con evidenziato il sito di indagine e relativa legenda. Non in scala (a cura di Geol. C. Paniccia, Geol. S. Berardi, Agr. P. Raimondi).

Dalla Carta Geomorfologica di Rieti da PRG si evince che il sito oggetto del presente studio è ubicato in corrispondenza delle **alluvioni recenti e attuali**.

Si osserva, comunque, che il travertino è pressocché presente nel territorio limitrofo alla struttura: nel settore nord-ovest corrisponde alla placca del centro storico di Rieti con un lembo visibile anche a nord-est (immediatamente a nord della spalla settentrionale del ponte) mentre nella parte sud si localizza in località Campomoro ed è visibile in affioramento lungo la Via Salaria.

In Figura 7 viene riportato lo stralcio della Carta Geologico-Tecnica dove si evince che l'area di indagine è ubicata in corrispondenza dei terreni di copertura definiti come **SM – Sabbie limose, miscela di sabbia e limo**, costituiti da sabbie e limi con intercalazioni di argille, ghiaie e livelli di torba, in facies fluviale, di ambiente bacino (piana) intramontano.

Nell'area di esame sono stati eseguiti due sondaggi geognostici, ciascuno ubicato in corrispondenza delle due spalle del ponte, e due prove penetrometriche dinamiche superpesanti. Il sondaggio S1 e le DPSH, eseguiti rispettivamente in corrispondenza della spalla meridionale del ponte, hanno effettivamente messo in luce la presenza dei depositi alluvionali derivanti dall'azione di erosione e accumulo del Fiume Velino: si tratta in prevalenza di depositi sabbiosi, limosi e argillosi e subordinatamente ghiaiosi riscontrati dal piano campagna fino a fondo foro.

Il sondaggio S2 mostra, invece, un differente log stratigrafico: da p.c. fino a circa -14.40 m è stata riscontrata la coltre dei depositi alluvionali; da questa quota fino a fondo foro si assiste ad un passaggio di ambiente deposizionale testimoniato dalla presenza di travertini, argille grigie e sabbie travertinose che si alternano fino ad una profondità di -15.00 m.

Questo assetto conferma le cartografie precedentemente discusse e testimonia il differente grado di erosione operato dal Fiume Velino sul travertino, maggiormente accentuata a sud e in maniera minore a nord.

Dal punto di vista idrogeologico, il sito rientra nella parte centro-orientale della piana reatina, un settore di territorio caratterizzato da quattro maggiori strutture idrogeologiche rappresentate principalmente dagli acquiferi carbonatici, prevalentemente appartenenti alla Serie Umbro-Sabina, e che comprendono i Monti Giano-Nuria-Velino (di piattaforma carbonatica), la dorsale dei Monti Sabini Centrali e quella dei Monti Sabini Settentrionali (M. Tancia-M. Pizzuto) e i Monti Reatini.

Nella Figura 8 viene riportata la *carta schematica dell'infiltrazione efficace potenziale dei complessi idrogeologici* redatta nello studio di Martarelli et Alii (2008) entro cui ricade il ponte in esame. Dalla carta si evince che il territorio oggetto della presente relazione è ubicato in corrispondenza del limite fra il *Complesso Fluvio-Lacustre della Piana Reatina* (i.e. < 100 mm/anno), il *Complesso Marnoso Calcareo e Complesso Conglomeratico-Sabbioso* (100 < i.e. mm/anno) (località Cappuccini) e il *Complesso dei Depositi Detritici e Complesso dei Travertini* (200 < i.e.< 500 mm/anno).

Figura 8: Carta schematica dell'infiltrazione efficace potenziale dei complessi idrogeologici nell'area in studio.

La zona di studio ricade, inoltre, nel Foglio 01 della Carta Idrogeologica della Regione Lazio, di cui si riporta uno stralcio in Figura 9; da questa cartografia si evince che il sito è ubicato in corrispondenza del limite fra tre diversi complessi idrogeologici:

- Complesso dei Depositi Alluvionali recenti (1) potenzialità acquifera da bassa a medio-alta: alluvioni ghiaiose, sabbiose, argillose attuali e recenti anche terrazzate e coperture eluviali e colluviali, aventi spessore variabile da pochi metri ad oltre un centinaio di metri. Dove il complesso è costituito dai depositi alluvionali dei corsi d'acqua perenni presenta gli spessori maggiori (da una decina ad oltre un centinaio di metri) e contiene falde multistrato di importanza regionale. I depositi alluvionali dei corsi d'acqua minori, con spessori variabili da pochi metri ad alcune decine di metri, possono essere sede di falde locali di limitata estensione. Ponte Cavallotti ricade in corrispondenza di questo complesso idrogeologico.
- Complesso dei Travertini (4) potenzialità acquifera medio alta: Travertini antichi, recenti ed attuali, concrezioni travertinose intercalate a depositi alluvionali e lacustri. Lo spessore è variabile, fino ad un massimo di un centinaio di metri. Dove il complesso affiora in estese placche isolate è sede di una circolazione idrica significativa che dà luogo a falde locali di buona produttività; dove si trova in continuità idraulica con gli acquiferi alluvionali e/o carbonatici regionali, la produttività della falda aumenta perché ben alimentata.
- Complesso Idrogeologico dei Conglomerati (12 b) potenzialità acquifera da medio bassa a medio alta: si tratta di conglomerati poligenici che assumono potenzialità idriche differenti in funzione del loro spessore e della natura della matrice e/o cemento. In particolare, nella zona compresa fra gli abitati di Casaprota, Frasso Sabino, Poggio Nativo, Torricella in Sabina e Monteleone Sabino affiora estesamente il <u>sottocomplesso 12b</u>, formato da conglomerati a potenzialità idrica medio-alta, generalmente cementati, aventi spessore variabile da qualche decina a diverse centinaia di metri (Pliocene-Pleistocene).

Figura 9: Carta Idrogeologica del Territorio della Regione Lazio-Foglio 1 e relativa legenda. Non in Scala.

Ponte Cavallotti è ubicato nella porzione centrale del Comune di Rieti, in un settore di territorio pianeggiante corrispondente all'alveo del Fiume Velino. Da un punto di vista topografico la zona si attesta su quote circa variabili da 394 e 396 m s.l.m.; e la superficie topografica presenta una inclinazione media i < 15° rientrando, quindi, nella **categoria topografica T1** - *Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°*.

Dal rilevamento del sito non è stata osservata la presenza di dissesti in atto e/o potenziali; lo stato di vulnerabilità geologica ed idrogeologica dell'area è stato comunque approfondito attraverso la consultazione della documentazione relativa agli strumenti di programmazione e pianificazione territoriale su scala sovracomunale, reperibili in rete.

Si è, quindi, proceduto all'esame dei seguenti documenti:

- 18
- Piano Stralcio di Bacino per l'Assetto Idrogeologico (PAI) dell'Autorità di Bacino del Fiume Tevere – Inventario dei fenomeni franosi e situazioni a rischio di frana;
- Piano Stralcio di Bacino per l'Assetto Idrogeologico (PAI) dell'Autorità di Bacino del Fiume Tevere – Mappe della pericolosità;
- Piano Stralcio di Bacino per l'Assetto Idrogeologico (PAI) dell'Autorità di Bacino del Fiume Tevere – Mappe della pericolosità (Piano di gestione del rischio di alluvioni, Distretto Idrografico dell'Appennino Centrale);
- > Carta del Vincolo Idrogeologico del Comune di Rieti;
- > Stralcio livello Microzonazione Sismica di Livello 1 del Comune di Rieti.
- > Stralcio livello Microzonazione Sismica di Livello 3 del Comune di Rieti.

Per quanto concerne il Piano Stralcio di Bacino per l'Assetto Idrogeologico (PAI) dell'Autorità di Bacino del Fiume Tevere – Inventario dei fenomeni franosi e situazioni a rischio di frana riportato in Figura 10, <u>l'area non rientra in zone soggette a</u> <u>movimenti franosi.</u>

Figura 10: Estratto Tav. n.108 del PAI Autorità di bacino del Fiume Tevere - Inventario dei fenomeni franosi e situazioni a rischio di frana. Non in scala.

Per quanto riguarda il Piano Stralcio di Bacino per l'Assetto Idrogeologico (PAI) dell'Autorità di Bacino del Fiume Tevere – Mappe della pericolosità (Piano di gestione del rischio di alluvioni, Distretto Idrografico dell'Appennino Centrale), riportato in Figura 11, <u>il sito di studio ricade in una zona cartografata con classe di</u> <u>pericolosità P3 - elevata probabilità (alluvioni frequenti).</u>

Figura 11: Estratto Tav. n.75 del PAI Autorità di bacino del Fiume Tevere, Mappe della pericolosità (Piano di gestione del rischio di alluvioni, Distretto Idrografico dell'Appennino Centrale). Non in scala.

Nel Piano Stralcio di Bacino per l'Assetto Idrogeologico (PAI) dell'Autorità di Bacino del Fiume Tevere – Mappe del rischio (Piano di gestione del rischio di alluvioni, Distretto Idrografico dell'Appennino Centrale), <u>il sito di studio ricade in una zona</u> <u>cartogrfata con classe di rischio R2 - rischio medio</u>. Tale assetto può essere osservato in Figura 12.

Figura 12: Estratto Tav. n.75 del PAI Autorità di bacino del Fiume Tevere, Mappe del rischio (Piano di gestione del rischio di alluvioni, Distretto Idrografico dell'Appennino Centrale). Non in scala.

In base al Piano di Gestione del Rischio Alluvioni (direttiva 2007/60/CE – D. Lgs 23 febbraio 2010 n. 49) e in base alla Relazione Generale (Marzo 2016) redatta per il

Distretto idrografico dell'Appennino Centrale – Autorità di Bacino del Tevere, sono state definite gli interventi edilizi che si possono attuare in tali zone.

In particolare, il sito di indagine è disciplinato dall'Art. 4 – Le Aree a Pericolosità P3:

<u> Art. 4. – Le aree a pericolosità P3</u>

1. Nelle aree a pericolosità P3, riferite a scenari di inondazione con frequenza di accadimento corrispondente a tempi di ritorno minori o uguali di 50 anni, il Piano persegue l'obiettivo di garantire generali condizioni di sicurezza idraulica, assicurando il libero deflusso della piena di riferimento unitamente alla conservazione e al miglioramento delle caratteristiche naturali e ambientali, il mantenimento e/o il recupero delle condizioni di equilibrio dinamico dell'alveo e favorendo l'evoluzione naturale del fiume.

2. In tali aree sono ammessi, in via generale:

- interventi edilizi sul patrimonio esistente di manutenzione ordinaria, straordinaria, restauro, risanamento;
- interventi di demolizione ed interventi comunque volti alla delocalizzazione;
- gli interventi sulle infrastrutture pubbliche o di pubblica utilità.

Gli interventi di cui sopra non possono comportare ampliamenti né modifica delle destinazioni d'uso con incremento del carico antropico

Per le specifiche applicazioni si fa riferimento agli articoli dei rispettivi PAI che disciplinano le zone inondabili le aree a pericolosità o le fasce comunque individuate con riferimento ad un tempo di ritorno dei fenomeni minore od uguale di 50 anni.

Per quanto concerne il vincolo idrogeologico, viene riportato in Figura 13 uno stralcio della carta relativa al Comune di Rieti; come si può osservare dalla figura sottostante <u>il Ponte Cavallotti è esterno all'aree sottoposte a vincolo idrogeologico.</u>

Figura 13: Stralcio della carta del vincolo idrogeologico del Comune di Frasso Sabino (RI).

Per quanto riguarda lo studio di Microzonazione Sismica, è stata consultata la Carta delle Microzone Omogenee in Prospettiva Sismica (MOPS), riportata in Figura 14; dalla carta si evince che il sito in esame ricade in **zona stabile suscettibile di amplificazioni locali SA 2009**, costituta da un primo orizzonte di depositi alluvionali, a granulometria prevalentemente sabbiosa e limosa, da poco a mediamente addensati con livelli e lenti di argille, spessi circa 60 m, poggianti sopra ghiaie e ciottoli ben addensati e localmente poco cementati.

Il sito inoltre rientra in una zona cartografata come di <u>Za lq, cioè zona di</u> <u>attenzione per instabilità per liquefazione</u>, per cui è stata analizzata la potenzialità di liquefazione dei terreni discussa Capitolo 12.

22

Figura 14: Carta delle Microzone Omogenee in Prospettiva Sismica e relativa legenda, del Comune di Rieti. Figura non in scala.

Per quanto concerne la Carta delle Microzone Sismiche, l'area in esame rientra solo parzialmente all'interno delle perimetrazioni oggetto degli studi di Microzonazione Sismica di Livello 3 di Rieti. Nelle tavole relative ai tre periodi di riferimento viene riportata, quindi, solamente la zona settentrionale del ponte: si tratta di un'area che ricade in una zona di attenzione per instabilità per liquefazione e in una zona che amplifica secondo i dati del fattore di amplificazione (FA) riportati nella legenda, tenendo conto di tre diversi intervalli di periodo.

PERIODO 0.1-0.5 s	PERIODO 0.4-0.8 s	PERIODO 0.7-1.1 s
FA = 1.3	FA = 1.9	FA = 2.3

Wia della Chimica snc – Rieti 🕜 3290586415 geologo.robertoseri@gmail.com - <u>sirius@epap.sicurezzapostale.it</u> P.I. 01215570571 - SRERRT64L25L117T

Periodo 0.1-0.5 s

Periodo 0.4-0.8 s

Periodo 0.7-1.1 s

Figura 15: Carta di microzone sismiche e relativa legenda, Livello 3 di MS del Comune di Rieti. Figura non in scala.

5 PROGRAMMA DI INDAGINE

Il programma di indagine sviluppato è stato il seguente (si veda ubicazione indagini):

- N°1 sondaggio geognostico a carotaggio continuo (S1) spinto fino alla profondità di -30.00 m e attrezzato a Down Hole;
- N°1 sondaggio geognostico a carotaggio continuo (S2) spinto fino alla profondità di -15.00 m;
- N°4 prove penetrometriche dinamiche SPT in foro di sondaggio, di cui n°2 eseguite entro il foro di sondaggio S1 e n°2 eseguite entro il foro di sondaggio S2;
- N°4 campioni di terreno da sottoporre alle analisi di laboratorio geotecnico, di cui N°3 prelevati durante la perforazione del sondaggio geognostico S1 e N°1 prelevato durante la perforazione del sondaggio geognostico S2;
- N°2 prove geofisiche indirette MASW;
- N°2 misure di rumore sismico ambientale HVSR;
- N°1 prova geofisica diretta Down Hole.

Sono di seguito riportati i risultati delle indagini geofisiche e geotecniche eseguite dell'area di studio.

6 SONDAGGI GEOGNOSTICI

6.1 Modalità di esecuzione dei sondaggi geognostici

Per ottenere una descrizione dettagliata della stratigrafia del terreno di sedime del sito in esame sono stati eseguiti due sondaggi geognostici S1 e S2 con il sistema di perforazione a rotazione con carotaggio continuo nel quale l'avanzamento della perforazione è stato compiuto mediante batteria di aste. La sonda utilizzata è a testa idraulica adatta in presenza di terreni prevalentemente sciolti (non rocciosi) e misti, caratteristici della zona.

I sondaggi geognostici sono stati eseguiti tramite la sonda cingolata Marca COMACCHIO, modello GEO 405, matricola 2989, conforme alle direttive CE 2006/42/CE, 2014/30/UE e 2000/14/CE.

Le caratteristiche tecniche della macchina sono le seguenti:

- Peso complessivo = 6700 kg;
- Forza massima di spinta = 4500 daN;
- Forza massima di tiro = 6500 daN;

- Coppia = 1100 daN/m;
- Giri = 50-500 rpm;
- Carotiere Ø=101 mm.

Il campionamento dei terreni è stato condotto in maniera "indisturbata" utilizzando un campionatore a pareti sottili di tipo Shelby di lunghezza pari a 50 cm e diametro pari a 101 mm, con il metodo di infissione a pressione. La perforazione è avvenuta con acqua di circolazione solo laddove i litotipi si presentavano particolarmente consistenti e addensati.

Le carote di terreno estratto sono state collocate in maniera ordinata e continua all'interno di cassette catalogatrici in PVC di dimensioni 1.00 x 0.60 m provviste di setti separatori. Lungo di esse si sono disposti dei contrassegni indelebili in corrispondenza delle quote progressive del sondaggio (riferite al p.c.). Ogni cassetta è stata contraddistinta con la sigla del sondaggio, da un numero progressivo, dalle quote di prelievo e dal nome del cantiere.

Le modalità di esecuzione sono state condotte in modo tale da minimizzare le variazioni di stato dei terreni attraversati ed al fondo foro. La velocità e pressione del fluido, ove utilizzato, sono stati controllati.

Per quanto possibile si è cercato di evitare gli effetti "pistone" e/o "pompa" dovuti a bruschi movimenti assiali della batteria. La stabilità del fondo foro è stata garantita tramite l'infissione per rotazione e pressione di rivestimenti metallici, aventi diametro ϕ = 127 mm.

6.2 Modalità di esecuzione delle prove SPT

Sono state eseguite N°4 prove penetrometriche dinamiche SPT in foro di sondaggio, di cui n°2 eseguite entro il foro di sondaggio S1 e n°2 eseguite entro il foro di sondaggio S2.

Le caratteristiche dello strumento sono:

Caratteristiche Tecniche-Strumentali Sonda: PROVE SPT IN FORO

- Rif. Norme = DIN 4094
- Peso Massa battente = 63,5 Kg
- Altezza di caduta libera = 0,76 m
- Peso sistema di battuta = 4,2 Kg
- Diametro punta conica = 50,46 mm
- Area di base punta = 20 cm^2

- Lunghezza delle aste = 1 m
- Peso aste a metro = 7 Kg/m
- Profondità giunzione prima asta = 0,80 m
- Avanzamento punta = 0,30 m
- Numero colpi per punta = N (30)
- Coeff. Correlazione = 1
- Rivestimento/fanghi = No

6.3 Modalità di prelievo dei campioni di terreno

Durante l'esecuzione dei sondaggi sono stati prelevati N°4 campioni, di cui n°3 prelevati durante l'esecuzione del sondaggio S1 e di cui n°1 prelevato durante l'esecuzione del sondaggio S2.

I campioni indisturbati sono stati prelevati mediante apposito campionatore a pareti sottili di tipo Shelby. Lo strumento è composto da una testa con valvola a sfera e relativi sfiati a cui è collegato il tubo di infissione che funge da contenitore del campione di terreno.

Lo spessore di tale tubo può variare normalmente da 2 a 3 mm. La pressione per l'infissione del campionatore viene esercitata attraverso le aste di manovra per mezzo della slitta di avanzamento della sonda.

La testa del campionatore, per una lunghezza di circa 15 cm, subito al di sotto della valvola e fino all'attacco per il tubo porta campione, è di diametro prossimo a quello del tubo stesso per consentire al materiale disturbato, eventualmente presente a fondo foro, di entrarvi, e quindi di ridurre la possibilità di "disturbare" il campione.

6.4 Sondaggio geognostico S1

Il sondaggio geognostico S1, la cui ubicazione è visibile in Figura 16, è stato eseguito in data 31/08/2021 ad una quota di circa 393 m s.l.m. e in corrispondenza del punto di coordinate: Latitudine: 42.402470°, Longitudine: 12.871258°. Il sondaggio geognostico S1 è stato spinto fino ad una profondità di 30 m a carotaggio continuo.

Durante la perforazione del sondaggio è stata riscontrata la presenza della falda ad una quota di circa -1.50 m dal piano campagna. Data la natura prevalentemente granulare dei terreni investigati sono stati inseriti dei rivestimenti metallici da p.c. a -30 m aventi diametro ϕ = 127 mm; il foro di sondaggio è stato poi attrezzato per la prova Down Hole.

Figura 16: Postazione del sondaggio geognostico S1.

La stratigrafia individuata con il sondaggio è la seguente:

- Dal p.c. a -0.50 m: Suolo limoso-sabbioso avana.
- Da -0.50 m. a -6.00 m: Sabbia limosa debolmente argillosa e ghiaiosa, di colore grigio olivastro, sciolto.
- Da -6.00 m a -10.00 m: Alternanza di sabbie e limi, debolmente argillosi di colore grigio olivastro.
 - Da -6.00 m a -7.50 m limi sabbiosi grigi poco consistenti.
 - Da -7.50 m a -7.80 m sabbie grigie medio-fini, sciolte.
 - Da -7.80 m a -8.10 m è presente un trovante di legno torboso.
 - Da -8.10 m a -9.00 m limi sabbiosi grigi poco consistenti.
 - Da -9.00 m a -9.90 m sabbie grigie medio-fini, sciolte.
 - Da -9.90 m a -10.00 m è presente un trovante di legno torboso.
- Da -10.00 m a -13.00 m: Ghiaia in matrice sabbiosa, grossolana, ad elementi calcarei arrotondati, con diametro da 0.5 a 3.0 cm.
- Da -13.00 m a -30.00 m: Limo con sabbia argilloso di colore grigio olivastro, molle e poco plastico passante ad argilla grigia debolmente limosa, plastica e

compatta. Nell'ultimo tratto aumenta la componente sabbiosa a granulometria medio-fine, sciolta.

6.4.1 Prove penetrometriche dinamiche (SPT) in foro di sondaggio S1

Sono state eseguite n. 2 prove penetrometriche dinamiche in foro di sondaggio S1, rispettivamente alla profondità di -3.00 m e -12.00 m. Nella Tabella 3 si riportano i risultati della prova eseguita:

STANDARD PENETRATION TEST – AGI 1977			
MODALITA' PROVE			
Sondaggio		S1	
Data		31/08/2021	
Perforazione		Carotaggio continuo	
Diametro foro (mm)		127	
Livello falda		-	
Massa Aste (Kg/m)		10,0	
Massa del maglio (Kg)		63,5	
Altezza di caduta (m)		0,76	
	S.P.T. Nº 1		
Profondità (m)		-3.00	
Campionatore		Spt in foro	
Punta		Chiusa	
Valori			
N1= 1	N2= 1	N3= 1	
S.P.T. N° 2			
Profondità (m)		-12.00	
Campionatore		Spt in foro	
Punta		Chiusa	
	Valori		
N1= 13	N2= 17	N3= 21	

6.4.2 Campione S1-C1

Il campione S1-C1 è stato prelevato tramite campionatore Shelby in data 31/08/2021 ad una profondità compresa fra -5.50 m e -6.00 m da p.c.; i risultati delle prove complete di laboratorio sono riportate nell'Allegato 5.

Di seguito vengono riportati i parametri geotecnici principali relativi alle prove di laboratorio eseguite:

CAMPIONE S1 - C1:

Profondità di prelievo: da -5.50 m a -6.00 m.

Descrizione del campione: Sabbia limosa, debolmente argillosa e ghiaiosa, di colore grigio olivastro, non plastica in relazione alla frazione argillosa, reazione all'acido cloridrico positiva.

Peso di Volume Naturale: $\gamma_n = 21.67 \text{ kN/m}^3$.

Coesione efficace: c' = 0 kPa.

Angolo d'attrito efficace: $\phi' = 38^{\circ}$.

Ghiaia = 1%; Sabbia = 71%; Limo = 20%; Argilla = 8%.

Figura 17: Prova di taglio diretto eseguita sul campione S1-C1.

6.4.3 Campione S1-C2

Il campione S1-C2 è stato prelevato tramite campionatore Shelby in data 31/08/2021 ad una profondità compresa fra -8.50 m e -9.00 m da p.c.; i risultati delle prove complete di laboratorio sono riportate nell'Allegato 5.

Di seguito vengono riportati i parametri geotecnici principali relativi alle prove di laboratorio eseguite:

CAMPIONE S1 - C2:

Profondità di prelievo: da -8.50 m a -9.00 m.

Descrizione del campione: Sabbia con limo, debolmente argillosa di colore grigio olivastro, non plastica in relazione alla frazione argillosa, reazione all'acido cloridrico positiva.

Peso di Volume Naturale: $\gamma_n = 20.63 \text{ kN/m}^3$.

Coesione efficace: c' = 0 kPa.

Angolo d'attrito efficace: $\phi' = 36^{\circ}$.

Wia della Chimica snc – Rieti 🕜 3290586415 geologo.robertoseri@gmail.com - <u>sirius@epap.sicurezzapostale.it</u> P.I. 01215570571 - SRERRT64L25L117T

Ghiaia = 0%; Sabbia = 69%; Limo = 25%; Argilla = 6%.

Figura 18: Prova di taglio diretto eseguita sul campione S1-C2.

6.4.4 Campione S1-C3

Il campione S1-C3 è stato prelevato tramite campionatore Shelby in data 31/08/2021 ad una profondità compresa fra -15.00 m e -15.50 m da p.c.; i risultati delle prove complete di laboratorio sono riportate nell'Allegato 5.

Di seguito vengono riportati i parametri geotecnici principali relativi alle prove di laboratorio eseguite:

CAMPIONE S1 - C3:

Profondità di prelievo: da -15.00 m a -15.50 m.

Descrizione del campione: Limo con sabbia argilloso, di colore grigio olivastro, poco plastico ed inattivo in relazione alla frazione argillosa, reazione all'acido cloridrico positiva.

Peso di Volume Naturale: $\gamma_n = 19.98 \text{ kN/m}^3$.

Coesione efficace: c' = 2 kPa.

Angolo d'attrito efficace: $\phi' = 29^{\circ}$.

Ghiaia = 0%; Sabbia = 32%; Limo = 47%; Argilla = 21%.

Wia della Chimica snc – Rieti 🕜 3290586415 geologo.robertoseri@gmail.com - <u>sirius@epap.sicurezzapostale.it</u> P.I. 01215570571 - SRERRT64L25L117T

Figura 19: Prova di taglio diretto eseguita sul campione S1-C3.

Relativamente al campione S1-C3 si sono calcolati i limiti di Atterberg, da cui si può dedurre che:

- Il campione rientra nel campo delle argille magre (illitiche) [LL<50%], confermato anche dal valore del LP [LP 31%].
- Il campione rientra tra i terreni poco plastici [5%<Ip≤15%];
- Il campione rientra tra le argille inattive [A<0.75];
- Il terreno campionato è caratterizzato da una consistenza semisolida, dato che Ic>1 e wn > LR.

LIMITE DI LIQUIDITA' LL	45%
LIMITE DI PLASTICITA'	31%
INDICE DI PLASTICITA'	14%
LIMITE DI RITIRO LR	10%
CONTENUTO ACQUA NATURALE	29.4%
INDICE DI CONSISTENZA IC	1.09
INDICE DI LIQUIDITA'	<0%
INDICE DI LIQUIDITA' INDICE DI RITIRO Ir	<0%

RAPPORTO DI RITIRO Rr	7.66
INDICE DI ATTIVITA' A	0.68

6.5 Sondaggio geognostico S2

Il sondaggio geognostico S2, la cui ubicazione è visibile in Figura 20, è stato eseguito in data 02/09/2021 ad una quota di circa 396 m s.l.m. e in corrispondenza del punto di coordinate: Latitudine: 42.402700° ; Longitudine: 12.871716° .

Durante la perforazione del sondaggio è stata riscontrata la presenza della falda ad una quota di circa -3.00 m dal piano campagna. Il sondaggio geognostico S2 è stato spinto fino ad una profondità di 15.00 m a carotaggio continuo.

Figura 20: Postazione del sondaggio geognostico S2.

Data la natura prevalentemente granulare dei terreni investigati sono stati inseriti dei rivestimenti metallici da p.c. a -15.00 m aventi diametro ϕ = 127 mm

La stratigrafia individuata con il sondaggio è la seguente:

 Dal p.c. a -3.00 m: Terreno di riporto in matrice limoso-argilloso con inclusi calcarei di pezzatura medio-grossa e laterizi. Da -1.50 m la pezzatura degli inclusi diventa minore ma resta diffusa la presenza di laterizi di piccole dimensioni.

- Da -3.00 m. a -8.50 m: Alternanza di sabbie, limi e argille di colore variabile dal marrone-avana al grigio olivastro.
 - Da -3.00 m a -4.00 m limo con sabbia argilloso di colore grigio olivastro, molto consistente, plastico.
 - Da -4.00 m a -6.00 m limo avana compatto con piccoli inclusi calcarei, leggermente plastico.
 - Da -6.00 m a -7.00 m argilla limosa debolmente ghiaiosa con inclusi millimetrici calcarei e frustoli carboniosi.
 - Da -7.00 m a -8.50 m sabbia avana fine.
- Da -8.50 m a -14.40 m: Argilla sabbiosa avana plastica e compatta. Da -12.00 m a -13.00 m è presente un orizzonte di limo avana poco consistente.
- Da -14.40 m a -14.50 m: Travertino.
- Da -14.50 m a -14.80 m: Argilla grigia compatta, poco plastica.
- Da -14.80 m a -15.00 m: Sabbia travertinosa.

6.5.1 Prove penetrometriche dinamiche (SPT) in foro di sondaggio S2

Sono state eseguite n. 2 prove penetrometriche dinamiche in foro di sondaggio S2, rispettivamente alla profondità di -3.50 m e -9.00 m. Nella Tabella 4 si riportano i risultati della prova eseguita:

STANDARD PENETRATION TEST – AGI 1977			
MODALITA' PROVE			
Sondaggio		S2	
Data		02/09/2021	
Perforazione		Carotaggio continuo	
Diametro foro (mm)		127	
Livello falda		-	
Massa Aste (Kg/m)		10,0	
Massa del maglio (Kg)	Massa del maglio (Kg) 63,5		
Altezza di caduta (m)		0,76	
	S.P.T. N	° 1	
Profondità (m)		-3.50	
Campionatore		Spt in foro	
Punta Chiusa		Chiusa	
Valori			
N1= 5	N2= 6	N3= 8	
S.P.T. N° 2			
Profondità (m)		-9.00	
Campionatore		Spt in foro	
Punta		Chiusa	
	Valor	i	
N1= 2	N2= 2	N3= 3	

Tabella 4: Prove SPT eseguite nel sondaggio S2.

6.5.2 Campione S2-C1

Il campione S2-C1 è stato prelevato tramite campionatore Shelby in data 02/09/2021 ad una profondità compresa fra -3.00 m e -3.50 m da p.c.; i risultati delle prove complete di laboratorio sono riportate nell'Allegato 5.

Di seguito vengono riportati i parametri geotecnici principali relativi alle prove di laboratorio eseguite:

CAMPIONE S2 - C1:

Profondità di prelievo: da -3.00 m a -3.50 m.

Descrizione del campione: Limo con sabbia argilloso, di colore grigio olivastro, molto consistente, plastico e normalmente attivo in relazione alla frazione argillosa, reazione all'acido cloridrico positiva.

Peso di Volume Naturale: $\gamma_n = 20.46 \text{ kN/m}^3$.

Coesione efficace: c' = 0 kPa.

Angolo d'attrito efficace: $\phi' = 38^{\circ}$.

Ghiaia = 1%; Sabbia = 33%; Limo = 49%; Argilla = 17%.

Figura 21: Prova di taglio diretto eseguita sul campione S2-C1.

Relativamente al campione S2-C1 si sono calcolati i limiti di Atterberg, da cui si può dedurre che:

- Il campione rientra al limite fra le argille magre (illitiche) [LL<50%] e le argille grasse (montmorillonitiche) [50%< LL < 80%].
- Il campione rientra tra i terreni plastici [15%<Ip≤40%];
- Il campione rientra tra le argille normalmente attive [0.75<A<1.25];
- Il terreno campionato è caratterizzato da una consistenza semisolida, dato che Ic>1 e wn > LR.

LIMITE DI LIQUIDITA' LL	51%
LIMITE DI PLASTICITA'	30%
INDICE DI PLASTICITA'	21%
LIMITE DI RITIRO LR	12%
CONTENUTO ACQUA NATURALE	21%
INDICE DI CONSISTENZA IC	1.45
INDICE DI LIQUIDITA'	<0%
INDICE DI RITIRO Ir	1.87
RAPPORTO DI RITIRO Rr	5.61
INDICE DI ATTIVITA' A	1.22

7 PROVE PENETROMETRICHE DINAMICHE SUPERPESANTI DPSH

Per i sondaggi penetrometrici DPSH è stato utilizzato un penetrometro Marca *Deep Drill S.r.l. modello SP 200 SM.* Le caratteristiche tecniche dello strumento sono riportate nei moduli delle prove.

L'indagine consiste nell'infiggere nel terreno la punta per mezzo delle aste percosse dal maglio e nel contare il numero delle percussioni che occorrono per ottenere un approfondimento standard.

Dalla prova si ottengono degli istogrammi che pongono in relazione la profondità ed il numero dei colpi con i parametri geotecnici del terreno.

7.1 Prova penetrometrica dinamica superpesante DPSH1

La prova penetrometrica DPSH1 è stata eseguita in data 07/09/2021, la cui ubicazione è visibile in Figura 22. Durante la fase di estrazione si sono riscontrate delle aste umide da circa -4.50 m.

Figura 22: Prova penetrometrica dinamica superpesante DPSH1.

La prova è stata spinta fino ad una profondità di -13.80 m al p.c.; la stratigrafia individuata è stata la seguente:

Da p.c. a -0.60 m: riporto/terreno vegetale	Nspt = 18
Da -0.60 m a -3.90 m: sabbia limosa deb. argillosa e ghiaiosa	Nspt = 3.73
Da -3.90 m a -7.50 m: limo e sabbia deb. argillosi	Nspt = 13
Da -7.50 m a -13.80 m: limo e argilla sabbiosi	Nspt = 22.33

7.2 Prova penetrometrica dinamica superpesante DPSH2

La prova penetrometrica DPSH2 è stata eseguita in data 07/09/2021, la cui ubicazione è visibile in Figura 23. Durante la fase di estrazione si sono riscontrate delle aste umide da circa -1.50 m.

La prova è stata spinta fino ad una profondità di -10.20 m dal p.c., quota del raggiungimento del rifiuto strumentale; la stratigrafia individuata è stata la seguente:

Da p.c. a -0.60 m: riporto/terreno vegetale	Nspt = 16.49
Da -0.60 m a -3.60 m: sabbia limosa deb. argillosa e ghiaiosa	Nspt = 3.77
Da -3.60 m a -6.90 m: limo e argilla sabbiosi poco consistenti	Nspt = 13.71
Da -6.90 m a -8.40 m: limo e argilla sabbiosi	Nspt = 26.62
Da -8.40 m a -10.20 m: ghiaia sabbiosa	Nspt = 48.89

Figura 23: Prova penetrometrica dinamica superpesante DPSH2.

8 MODELLO GEOLOGICO E PARAMETRI GEOTECNICI

Dalle indagini geotecniche sopra riportate, unite agli studi di bibliografia precedentemente citati, si è potuto dedurre l'assetto geologico-stratigrafico dell'area dove verranno realizzati gli interventi previsti per il completamento della pista ciclabile lungo Ponte Cavallotti.

Le indagini eseguite ad hoc nei mesi di Agosto-Luglio 2021 hanno confermato l'assetto geologico-stratigrafico osservato dalla consultazione tecnico-scientifica precedentemente discussa nel Capitolo 4.

Per quanto concerne *la spalla settentrionale del ponte* è stato eseguito n. 1 sondaggio a carotaggio continuo spinto fino a -15.00 m dal piano campagna; il log stratigrafico ottenuto è costituito da un primo orizzonte di terreno di riporto, spesso circa 3.00 m, poggiante sulla coltre di depositi alluvionali prevalentemente di natura sabbiosa, limosa e argillosa. A circa -14.40 m si assiste al passaggio dai terreni di copertura alluvionali al travertino, dapprima con un trovante di travertino litoide, poi con delle argille grigiastre, di probabile natura residuale, e a fondo foro sono presenti le sabbie travertinose.

Per quanto riguarda *la spalla meridionale del ponte* sono stati eseguiti n. 1 sondaggio a carotaggio continuo spinto fino a -30.00 m e n. 2 penetrometriche DPSH, lungo la campata del ponte. Questo set di dati ha permesso di constatare che il settore meridionale della struttura poggia fino a -30.00 m sui depositi alluvionali del Fiume Velino, rappresentati prevalentemente da sabbie, limi e argille e, in maniera subordinata, da ghiaie. È assente il travertino (almeno nel volume di terreno investigato): questo assetto stratigrafico potrebbe essere dovuto al fatto che lungo la sponda meridionale il Fiume Velino abbia eroso maggiormente i travertini e, in aggiunta, potrebbero essersi accumulati volumi più ingenti di alluvioni.

I dati ottenuti dall'esecuzione e dall'elaborazione delle prove geotecniche, uniti agli studi di bibliografia, permettono di definire i parametri geotecnici del terreno. Di seguito vengono, quindi, riportati i principali parametri di ogni singola formazione individuata.

SABBIE LIMOSE DEBOLMENTE ARGILLOSE E GHIAIOSE (S1C1)				
Angolo d'Attrito	$\phi = 38^{\circ}$			
Coesione	C = 0 kPa			
Peso di Volume naturale	$\gamma_{n} = 21.67 \text{ kN/m}^{3}$			
	σ 0-49 E_{ed} 2791 KPa; σ 49-98 E_{ed} 5298 KPa			
Moduli Edometrici	σ 98-196 E_{ed} 8521 KPa; σ 196-392 E_{ed} 12413 KPa			
	σ 392-784 E_{ed} 19223 KPa; σ 392-784 E_{ed} 27818 KPa			
ALTERNANZE DI LIMI CO	ON SABBIE ARGILLOSI E SABBIE E ARGILLOSE (S1C2-S2C3)			
Angolo d'Attrito	$\phi = 37^{\circ}$			
Coesione	C = 0 kPa			
Peso di Volume naturale	$\gamma_{n} = 20.55 \text{ kN/m}^{3}$			
GHIAIE IN MATRICE SAN	BIOSA GROSSOLANA			
Angolo d'Attrito	φ = 30.2°			
Coesione	C = 0 kPa			
Peso di Volume naturale $\gamma_n = 16.8 \text{ kN/m}^3$				
ALTERNANZE DI LIMI CON SABBIE ARGILLOSI E ARGILLA				
DEBOLMENTE LIMOSA (S1C3)				

I parametri geotecnici sono stati ricavati dai valori medi dei risultati ottenuti dalle analisi di laboratorio uniti alle prove penetrometriche dinamiche SPT e DPSH.

Wia della Chimica snc – Rieti 🕜 3290586415 geologo.robertoseri@gmail.com - <u>sirius@epap.sicurezzapostale.it</u> P.I. 01215570571 - SRERRT64L25L117T

Angolo d'Attrito	φ = 29°
Coesione	C = 2 kPa
Peso di Volume naturale	$\gamma_{n} = 19.98 \text{ kN}/m^{3}$

9 INDAGINI GEOFISICHE INDIRETTE

9.1 Indagini geofisiche indirette tipo MASW

Sono state eseguite due indagini sismiche di analisi spettrale delle onde superficiali con tecnica MASW (Multichannel Analysis SurfaceWaves). Finalità dell'indagine è la valutazione della velocità delle onde secondarie o trasversali del terreno tramite le quali determinare i parametri fisico – elastici del terreno. In particolare il profilo verticale delle onde S permetterà di valutare la velocità equivalente delle onde di taglio Vs30.

Nella maggior parte delle indagini sismiche di superficie, energizzando con onde di compressione, più di due terzi dell'energia generata viene trasmessa al terreno sotto forma di onde di Rayleigh, che costituiscono la componente principale del groundroll. Il fenomeno che sfrutta la tecnica MASW per ottenere dei profili di velocità delle onde S deriva dalla constatazione che l'onda superficiale ha una differente velocità di propagazione per ciascuna componente di frequenza, questo fenomeno è detto dispersione.

Mediante la trattazione spettrale del sismogramma, cioè a seguito di una trasformata di Fourier, si restituisce lo spettro del segnale e si identifica mediante modellazione sismostratigrafica la curva di dispersione sperimentale che meglio segue i valori massimi di ampiezza del modo fondamentale.

Nel caso in esame, si è utilizzata una strumentazione costituita da un sismografo digitale PASI GEA 24, 12 geofoni verticali a bassa frequenza verticali (4.5 Hz), una mazza di 8 Kg, una piastra in alluminio. È stata acquisita la componente verticale delle onde di Rayleigh energizzando verticalmente su piastra.

L'elaborazione è stata effettuata con un software dedicato WinMASW® 7.2 Academy che consente di analizzare dati sismici (common-shot gathers acquisiti in campagna) in modo tale da poter ricavare il profilo verticale della VS (velocità delle onde di taglio) tramite inversione delle curve di dispersione delle onde di Rayleigh, la cui procedura si rifà agli algoritmi genetici.

9.1.1 Prova geofisica MASW 1

In relazione all'andamento plano-altimetrico ed allo spazio disponibile per effettuare l'indagine, si è scelto un array costituito da 12 geofoni a spaziatura regolare di 2 m; la prova è stata ubicata parallelamente alle campate del ponte come è visibile in Figura 24.

Figura 24: Stendimento linea sismica per l'acquisizione della MASW1.

Sono state eseguite le acquisizioni della componente verticale ad uno degli estremi dello stendimento con offset di battuta di 6 m e 5 m.

L'offset di battuta che ha fornito dati qualitativamente migliori è di m 5, il cui il common-shot gather delle componenti acquisite in campagna si può osservare nella Figura 25.

Figura 25: Common-shot gather acquisito in campagna.

Il programma restituisce due modelli sismostratigrafici definiti "medio" e "migliore". La curva di dispersione che restituisce il miglior fitting degli spettri di velocità deriva da un profilo verticale delle onde S costituito da 6 sismostrati dalle seguenti caratteristiche:

Tabena 5. Modeno medio e mignore dena prova MASW1.					
MODELLO MEDIO			MODELLO MIGLIORE		
	(MEAN MODEL)		(BEST MODEL)		
Strato n.	Spessore (m)	Vs (m/s)	Strato n.	Spessore (m)	Vs (m/s)
1	6.5	120	1	6.5	120
2	6.7	207	2	6.9	207
3	5.4	359	3	5.0	363
4	6.0	419	4	6.0	408
5	6.4	607	5	6.9	660
6	-	695	6 - 708		
Vs30 = 240 m/s			Vs30 = 240 m/s		
VsE = 240 m/s				VsE =240 m/s	

Tabella 5: Modello medio e migliore della prova MASW1.

Di seguito si fornisce una stima approssimativa di Vp, densità e moduli elastici <u>in</u> <u>base al profilo di velocità del **modello medio** (Tabella 6):</u>

strato	Vp	Densità	Vp/Vs	Modulo di	Modulo di
n.	(m/s)	(g/cm ³)		Poisson	taglio (MPa)
1	226	1.70	1.88	0.30	24
2	428	1.85	2.07	0.35	79
3	731	2.00	2.04	0.34	257
4	1059	2.04	2.53	0.41	358
5	1115	2.14	1.84	0.29	788
6	1316	2.18	1.89	0.31	1051

Tabella 6: Vp, densità e moduli elastici del profilo di velocità medio della prova MASW1.

Figura 26: Spettri di velocità, curve di dispersione e modello sismostratigrafico della MASW1.

9.1.2 Prova geofisica MASW 2

In relazione all'andamento plano-altimetrico ed allo spazio disponibile per effettuare l'indagine, si è scelto un array costituito da 12 geofoni a spaziatura regolare di 2 m, ubicata trasversalmente al ponte come è visibile in Figura 27.

Figura 27: Stendimento linea sismica per l'acquisizione della MASW2.

Via della Chimica snc – Rieti 🕜 3290586415⁽²⁰⁾ geologo.robertoseri@gmail.com - <u>sirius@epap.sicurezzapostale.it</u> P.I. 01215570571 - SRERRT64L25L117T

Sono state eseguite le acquisizioni della componente verticale ad uno degli estremi dello stendimento con offset di battuta di 6 m e 5 m.

L'offset di battuta che ha fornito dati qualitativamente migliori è di m 5, di cui si può osservare il common-shot gather delle componenti acquisite in campagna nella Figura 28.

Figura 28: Common-shot gather acquisito in campagna.

Il programma restituisce due modelli sismostratigrafici definiti "medio" e "migliore". La curva di dispersione che restituisce il miglior fitting degli spettri di velocità deriva da un profilo verticale delle onde S costituito da 7 sismostrati dalle seguenti caratteristiche:

MODELLO MEDIO			MODELLO MIGLIORE		
	(MEAN MODEL)		(BEST MODEL)		
Strato n.	Spessore (m)	Vs (m/s)	Strato n.	Spessore (m)	Vs (m/s)
1	6.5	124	1	6.4	124
2	7.5	217	2	8.0	226
3	7.5	292	3	8.1	271
4	7.1	461	4	8.2	443
5	7.1	584	5	8.4	589
6	-	735	6 - 707		
Vs30 = 230 m/s			Vs30 = 224 m/s		
VsE = 230 m/s			VsE = 224 m/s		

Tabella '	7· Modello	medio e	migliore	della	nrova MASW2
Tabella .	. Moueno	meulo e	Inighter	uena	p10va MASw2.

Di seguito si fornisce una stima approssimativa di Vp, densità e moduli elastici <u>in</u> <u>base al profilo di velocità del **modello medio**:</u>

Ordine Geologi del Lazio n.838

44

strato	Vp	Densità	Vp/Vc	Modulo di	Modulo di
n.	(m/s)	(g/cm³)	vp/vs	Poisson	taglio (MPa)
1	229	1.71	1.85	0.29	26
2	464	1.86	2.14	0.36	88
3	600	1.94	2.05	0.34	165
4	903	2.06	1.96	0.32	439
5	1202	2.13	2.06	0.35	726
6	1673	2.19	2.28	0.38	1184

9.2 Misura di rumore sismico ambientale

La sismica passiva si basa sulla misura dei microtremori che sono sempre presenti sulla superficie terrestre e sono generati da fenomeni naturali (vento, onde marine) e artificiali (attività antropiche). Il metodo di indagine utilizzato è quello a stazione singola dei rapporti spettrali (HVSR).

Il metodo HVSR consiste nello studio del rapporto spettrale tra la componente orizzontale del rumore e quella verticale (H/V spectrum). Il valore di tale rapporto è direttamente correlato con la frequenza di risonanza determinata dal passaggio tra due strati con una differenza significativa del contrasto di impedenza (velocità delle onde e densità del materiale). Considerando due strati con differente impedenza acustica, la frequenza di risonanza (fr) è legata allo spessore e alla velocità delle onde di taglio Vs della copertura dalla seguente relazione:

45

```
fr = Vs 1/4 h
```

Vs1 =velocità delle onde S della copertura

h = spessore copertura

L' HVSR è in grado di fornire stime affidabili delle frequenze principali di risonanza dei sottosuoli.

9.2.1 Strumentazione impiegata

Lo strumento utilizzato per tali misurazioni è un geofono 3d da superficie con interfaccia USB marca PASI modello Gemini 2 caratterizzato da una frequenza naturale di risonanza di 2 Hz +/- 10%.

9.2.2 Risultati dell'indagine HVSR1

L'elaborazione è stata effettuata con un software dedicato WinMASW 2019. La prova è stata condotta in prossimità del sondaggio S1, come è visibile in Figura 30.

Figura 30: Punto di acquisizione della misura di rumore sismico ambientale HVSR1.

L'elaborazione della misura HVSR1 ha permesso di individuare un valore di un picco del rapporto spettrale H/V pari a 2.94 in corrispondenza del valore di frequenza pari a 2.16 Hz. Tale valore indica un probabile contrasto di impedenza ad una profondità di circa 26-28 m che, in base alle sismostratigrafie ottenute dalle prove MASW, potrebbe indicare il passaggio ai depositi alluvionali maggiormente addensati.

Questo valore, inoltre, è in accordo con quelli ottenuti nell'ambito degli studi di Microzonazione Sismica di Livello 3 del Comune di Rieti, che si attestano su valori di f0 tra 1.8-2 Hz.

Di seguito vengono riportati gli spettri di ampiezza e del rapporto H/V in Figura 31e in Figura 32 la persistenza del segnale.

Figura 31: Spettri di ampiezza e del rapporto H/V della prova HVSR1.

Figura 32: Continuity (Persistence) of the H/V Spectral Ratio della prova HVSR1.

Wia della Chimica snc – Rieti 🕜 3290586415 geologo.robertoseri@gmail.com - <u>sirius@epap.sicurezzapostale.it</u> P.I. 01215570571 - SRERRT64L25L117T

9.2.3 Risultati dell'indagine HVSR2

L'elaborazione è stata effettuata con un software dedicato WinMASW 2019. La prova è stata eseguita in prossimità del sondaggio S2, quindi al di sotto della spalla nord del ponte. L'ubicazione della prova è visibile in Figura 34.

Figura 34: Punto di acquisizione della misura di rumore sismico ambientale HVSR2.

L'elaborazione della misura HVSR2 ha permesso di individuare un valore di un picco del rapporto spettrale H/V pari a 2.71 in corrispondenza del valore di frequenza pari a 3.94 Hz. Questo valore è più alto rispetto alla prova HVSR1 eseguita sull'altra sponda fluviale e potrebbe individuare un contrasto di impedenza intorno ai 20 m, probabilmente il passaggio fra i depositi alluvionali e il travertino.

Di seguito vengono riportati gli spettri di ampiezza e del rapporto H/V in Figura 35 e in Figura 36 la persistenza del segnale.

Figura 35: Spettri di ampiezza e del rapporto H/V della prova HVSR2.

Figura 36: Continuity (Persistence) of the H/V Spectral Ratio della prova HVSR2. HVSR: directivity

10 INDAGINE GEOFISICA DIRETTA DOWN-HOLE

Le misure (Figura 38), sono state effettuate ogni metro, dalla profondità di 30 metri fino al piano campagna.

Figura 38: Postazione della prova Down Hole.

Dall'analisi dei sismogrammi, sono stati determinati i tempi d'arrivo delle onde di compressione (P) e di taglio (S), e quindi le velocità Vp e Vs. Note le velocità, sono stati calcolati i moduli elastici dinamici E, G, il coefficiente di Poisson ed il valore delle Vs30.

10.1 Strumentazione utilizzata

Si è utilizzato un sismografo digitale PASI GEA 24, un geofono tridimensionale da foro GFA-60 costituito da 3 geofoni da 10 Hz (1 vert. 2 orizz.) con un sistema di clamping tramite pistone pneumatico.

La creazione delle onde P e S è avvenuta per mezzo di una mazza di 8kg, con percussione rispettivamente su piattello in alluminio a terra e ai lati di una trave in legno massello, il segnale di inizio registrazione è dato dalla chiusura di un circuito elettrico.

10.2 Introduzione

Nel metodo sismico down hole (DH) viene misurato il tempo necessario per le onde P e S di spostarsi tra una sorgente sismica, posta in superficie, e i ricevitori, posti all'interno di un foro di sondaggio (in Figura 39 e Figura 40).

Le componenti indispensabili per una misura DH accurata consistono:

- una sorgente meccanica in grado di generare onde elastiche ricche di energia e direzionali;
- uno o più geofoni tridimensionali, con appropriata risposta in frequenza (4,5-14 Hz), direzionali e dotati di un sistema di ancoraggio alle pareti del tubo-foro;
- un sismografo multi-canale, in grado di registrare le forme d'onda in modo digitale e di registrarle su memoria di massa;
- un trasduttore (trigger) alloggiato nella sorgente necessario per l'identificazione dell'istante di partenza della sollecitazione dinamica mediante massa battente.

Figura 40: Schema down hole a due ricevitori.

Durante la perforazione, per ridurre l'effetto di disturbo nel terreno, i fori vengono sostenuti mediante fanghi bentonici e il loro diametro viene mantenuto piuttosto piccolo (mediamente 15 cm).

51

I fori vengono poi rivestiti mediante tubazioni, generalmente in PVC, e l'anulus riempito con una malta a ritiro controllato, generalmente composta di acqua, cemento e bentonite rispettivamente in proporzione di 100, 30 e 5 parti in peso.

Prima di ogni cosa, è però importante assicurarsi che il foro sia libero da strozzature e che il tubo di rivestimento non presenti lesioni.

10.3 Procedura sperimentale

La sorgente consiste in una piastra di alluminio che, dopo avere opportunamente predisposto il piano di appoggio, viene adagiata in superficie ad una distanza di 1,5 – 2,5 m dal foro e orientata in direzione ortogonale ad un raggio uscente dall'asse foro. Alla sorgente è agganciato il trasduttore di velocità utilizzato come trigger.

Se si dispone di due ricevitori, questi vengono collegati in modo da impedirne la rotazione relativa e da fissarne la distanza. Il primo dei due ricevitori viene raccordato ad una batteria di aste che ne permette l'orientamento dalla superficie e lo spostamento.

Una volta raggiunta la profondità di prova, i geofoni vengono orientati in modo che un trasduttore di ogni sensore sia diretto parallelamente all'asse della sorgente (orientamento assoluto).

A questo punto i ricevitori vengono assicurati alle pareti del tubo di rivestimento, la sorgente viene colpita in senso verticale (per generare onde di compressione P) o lateralmente (per generare onde di taglio SH) e, contemporaneamente, parte la registrazione del segnale di trigger e dei ricevitori.

Eseguite le registrazioni la profondità dei ricevitori viene modificata e la procedura sperimentale ripetuta.

10.4 Interpretazione in down hole con il metodo diretto

Per poter interpretare il down hole con il metodo diretto, inizialmente, bisogna correggere i tempi di tragitto (t) misurati lungo i percorsi sorgente-ricevitore per tenere conto dell'inclinazione del percorso delle onde. Se d è la distanza della sorgente dall'asse del foro (Figura 41), r la distanza fra la sorgente e la tripletta di sensori, z la profondità di misura è possibile ottenere i tempi corretti (tcorr) mediante la seguente formula di conversione:

 $1.0)t_{corr} = \frac{z}{r}t$

Calcolati i tempi corretti sia per le onde P che per le onde S si realizza il grafico tcorr – z in modo che la velocità media delle onde sismiche in strati omogenei di terreno

è rappresentata dall'inclinazione dei segmenti di retta lungo i quali si allineano i dati sperimentali (Figura 42). Ottenuti graficamente i sismostrati si ottengono la densità media, funzione della velocità e della profondità, e i seguenti parametri:

1. coefficiente di Poisson medio:

$$2.0)\nu_{\text{medio}} = 0.5 \frac{\left(\frac{V_{\text{p}}}{V_{\text{s}}}\right)^2 - 2}{\left(\frac{V_{\text{p}}}{V_{\text{s}}}\right)^2 - 1}$$

2. modulo di deformazione a taglio medio:

3.0) G medio =
$$\rho V_s^2$$

3. modulo di compressibilità edometrica medio:

4.0) E dmedio =
$$\rho V_p^2$$

4. modulo di Young medio:

5.0)
$$E_{\text{medio}} = 2 \rho V_{\text{s}}^2 (1 + v)$$

5. modulo di compressibilità volumetrica medio:

6.0)
$$\mathsf{E}_{\mathsf{vmedio}} = \rho \left(\mathsf{V}_{\mathsf{p}}^2 - \frac{4}{3} \mathsf{V}_{\mathsf{s}}^2 \right)$$

10.5 Interpretazione in down hole con il metodo intervallo

Con il metodo intervallo i tempi di tragitto dell'onda sismica si misurano fra due ricevitori consecutivi (Figura 43) posti a differente profondità, consentendo così di migliorare la qualità delle misure (velocità d'intervallo). Quando si dispone di un solo ricevitore, cioè nell'ipotesi in cui le coppie non corrispondano ad un unico impulso, i valori di velocità determinati vengono definiti di pseudo-intervallo, consentendo solo un'apparente migliore definizione del profilo di velocità. Ottenute le misure è possibile calcolare i tempi corretti con la 1.0) e la velocità intervallo delle onde P e S, con relativo grafico (Figura 44), con la formula seguente:

7.0
$$V_{p,s} = \frac{Z_2 - Z_1}{t_{2corr} - t_{1corr}}$$

Ottenute le velocità intervallo si calcolano la densità, il coefficiente di Poisson, il modulo di deformazione a taglio, il modulo di compressibilità edometrica, il modulo di Young, il modulo di compressibilità volumetrica per ogni intervallo con le formule riportate sopra.

Il metodo intervallo presenta però dei limiti:

- non tiene conto della velocità degli strati sovrastanti;

- non è applicabile nel caso in cui t2corr < t1corr.

Figura 43: Schema di down hole con metodo intervallo.

Figura 44: Profilo delle velocità sismiche con metodo intervallo.

Wia della Chimica snc – Rieti C 3290586415 geologo.robertoseri@gmail.com - <u>sirius@epap.sicurezzapostale.it</u> P.I. 01215570571 - SRERRT64L25L117T

Ambedue le procedure d'interpretazione sopra descritte sono comunque suscettibili di una critica fondamentale, cioè si basano sull'ipotesi che i percorsi delle onde siano rettilinei e coincidenti con quelli che collegano la sorgente ai ricevitori. Di solito ciò non è esatto, dato che, prima di giungere ai ricevitori, le onde subiscono fenomeni di rifrazione che ne modificano il percorso.

10.6 Risultati Down Hole

MISURE DOWN HOLE

Descrizione:	Completamento pista ciclabile
Committente:	Comune di Rieti
Cantiere:	Ponte Cavallotti
Località:	Rieti

Interpretazione delle misure

Dati iniziali

Offset scoppio [m]	Numero di ricezioni	Posizione primo geofono [m]	Interdistanza [m]
2.5	30	1	

Dati misure down hole

Registrazioni	Z	Тр	Ts
Nr.	[m]	[msec]	[msec]
1	1.00	6.2	21.2
2	2.00	9.7	24.8
3	3.00	13.5	31.1
4	4.00	16.1	37.2
5	5.00	17.7	42.8
6	6.00	20.7	47.6
7	7.00	23	53.3
8	8.00	24.9	61.3
9	9.00	26.9	68.6
10	10.00	28.5	73.7
11	11.00	29.6	79.2
12	12.00	30.7	82.1
13	13.00	31.4	85.2
14	14.00	32.9	88.9
15	15.00	35.1	93.5
16	16.00	38.8	98.6
17	17.00	42.6	105.8
18	18.00	43.4	108.6
19	19.00	44.5	111.8
20	20.00	47.2	116.3
21	21.00	47.8	120.3
22	22.00	48.6	123.6
23	23.00	50	127.4

Via della Chimica snc – Rieti 🕜 3290586415 geologo.robertoseri@gmail.com - <u>sirius@epap.sicurezzapostale.it</u> P.I. 01215570571 - SRERRT64L25L117T

Ordine Geologi del Lazio n.838

24	24.00	51.6	131.6
25	25.00	52.5	138.9
26	26.00	54.4	142.3
27	27.00	55.6	145.3
28	28.00	56.3	147.1
29	29.00	57	148.3
30	30.00	57.5	149.4

Risultati

SR	Tpcorr	Tscorr
[m]	[msec]	[msec]
2.6926	2.3026	7.8735
3.2016	6.0595	15.4924
3.9051	10.3710	23.8917
4.7170	13.6528	31.5455
5.5902	15.8314	38.2815
6.5000	19.1077	43.9385
7.4330	21.6601	50.1948
8.3815	23.7666	58.5096
9.3408	25.9186	66.0973
10.3078	27.6491	71.4995
11.2805	28.8639	77.2305
12.2577	30.0547	80.3743
13.2382	30.8350	83.6670
14.2215	32.3877	87.5156
15.2069	34.6224	92.2278
16.1941	38.3349	97.4180
17.1828	42.1467	104.6742
18.1728	42.9874	107.5675
19.1638	44.1197	110.8446
20.1556	46.8355	115.4019
21.1483	47.4648	119.4565
22.1416	48.2892	122.8096
23.1355	49.7072	126.6540
24.1299	51.3223	130.8918
25.1247	52.2395	138.2107
26.1199	54.1503	141.6467
27.1155	55.3632	144.6811
28.1114	56.0769	146.5172
29.1076	56.7894	147.7520
30.1040	57.3014	148.8839

Metodo diretto

Profondità di riferimento:	30 m
VS,eq:	201.5 m/s

Sismostrati con metodo diretto

Descrizione [-]	Profondità [m]
Sabbia limosa debolmente argillosa e ghiaiosa	7
Alternanza di sabbie e limi debolmente argillosi	11

Ghiaia in matrice sabbiosa	17
Limo con sabbia argilloso passante ad argilla debolmente limosa	26
Limo con sabbia argilloso passante ad argilla debolmente limosa addensato	30

Valori medi

Vp medio	Vs medio	g medio	ni madia	G medio	Ed medio	E medio	Ev medio
[m/s]	[m/s]	[kN/mc]	III IIIeulo	[MPa]	[MPa]	[MPa]	[MPa]
323.18	139.47	16.66	0.39	33.05	177.45	91.58	133.39
555.56	147.93	17.42	0.46	38.88	548.38	113.67	496.54
451.47	218.66	18.59	0.35	90.62	386.32	244.09	265.49
750	243.37	18.66	0.44	112.68	1070.05	324.77	919.82
1269.84	553.25	22.16	0.38	691.56	3643.2	1912.64	2721.12

Figura 45: Dromocrone.

	Onda P - Canalari —
1 m	
2 m	0.1 = 0.1 = 0.1 = 0.1 = 0.10 0.12 0.14 0.16 0.18 0.20 0.22 0.24 0.26 0.28 0.30 0.32 0.34 0.36 0.38 0.40 0.42 0.44 0.46 0.48 0.50 sec
3 m	
4 m	
5 m	0.0 ± 0.0 ± 0.0 ± 0.0 € 0.0 € 0.0 € 0.0 € 0.1 ± 0.1 ± 0.1 ± 0.1 ± 0.2 0.2 ± 0.2 ± 0.2 ± 0.2 ± 0.3 ± 0.3 ± 0.3 ± 0.4 \pm 0
6 m	0.0 - 0.0
7 m	00 0.0 ₱ 0.0 ₽ 0.0 0.0 0.0 0.00 0.00 0.00 0
8 m	0.0 0.0 ₱ 0.00 0.00 0.00 0.00 0.00 0.00
9 m	0.0 a0 € 0.0 € 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 m	0.0 = 0.02 0.04 0.05 0.06 010 012 114 0.16 0.18 0.20 0.22 0.24 0.25 0.30 0.32 0.34 0.35 0.38 0.40 0.42 0.44 0.46 0.48 0.50 sec
11 m	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0
12 m	0.0 + 0.02 0.04 0.06 0.78 0.10 0.12 0.13 0.20 0.22 0.24 0.28 0.30 0.32 0.34 0.36 0.38 0.38 0.40 0.42 0.44 0.46 0.48 0.30 sec
13 m	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
14 m	00 0.02 004 0.05 0.05 0.05 0.00 0.10 0.12 0.14 0.15 0.20 0.22 0.24 0.25 0.20 0.22 0.34 0.35 0.34 0.35 0.38 0.40 0.42 0.44 0.46 0.48 0.50 sec
15 m	00 - 0.02 0 04 0.06 0.06 0.10 0.07 0.14 0.16 0.18 0.20 022 0.24 0.25 0.28 0.30 0.32 0.34 0.35 0.38 0.40 0.42 0.44 0.46 0.48 0.30 sec
16 m	00 100 100 000 000 000 0.00 0.00 0.00 0
17 m	00- 00-
18 m	0.0 - 4.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
19 m	
20 m	$ \begin{array}{c} 0.0 \\ 0.02 \\ 0.02 \\ 0.02 \\ 0.03 \\ 0.05 \\ 0.08 \\ 0.$
21 m	0.0 ₱ 0.00 0.00 0.00 0.00 0.00 0.00 0.0
23 m	0.0 ₱ 0582 0041 0.06 0.08 0.10 0.12 0.14 0.16 0.18 020 922 0.24 0.28 0.28 030 032 0.34 0.38 0.38 0.40 0.42 0.44 0.46 0.48 0.30 030 0
24 m	$ \begin{array}{c} 0.0 \\ \hline 0.02 \\ \hline 0.02 \\ \hline 0.02 \\ \hline 0.04 \\ \hline 0.06 \\ \hline 0.06 \\ \hline 0.00 \\ \hline 0.0 \\ \hline$
25 m	$a_{0} \stackrel{\text{(a)}}{=} 0.42 \ 0.64 \ 0.66 \ 0.06 \ 0.10 \ 0.12 \ 0.14 \ 0.16 \ 0.15 \ 0.22 \ 0.22 \ 0.22 \ 0.24 \ 0.26 \ 0.32 \ 0.32 \ 0.32 \ 0.32 \ 0.34 \ 0.36 \ 0.35 \ 0.40 \ 0.42 \ 0.44 \ 0.46 \ 0.45 \ 0.50 \ \text{sec}$
26 m	0.0 = 0.02 + 6.04 + 0.06 + 0.06 + 0.012 + 0.14 + 0.16 + 0.18 + 0.20 + 0.22 + 0.28 + 0.28 + 0.28 + 0.30 + 0.32 + 0.38 + 0.40 + 0.42 + 0.44 + 0.46 + 0.48 + 0.50 + 0.50 + 0.00 +
27 m	0.0 ₱ 0%2°004 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 022 0.24 0.26 0.28 0.30 0.32 0.34 0.35 0.38 0.40 0.42 0.44 0.46 0.48 0.50 sec
28 m	
29 m	
30 m	$\begin{array}{c} 0.0 \pm \\ 0.0 \pm \\$

Figura 46: Vp.

Figura 47: Vs.

11 SISMICITA' E CATEGORIA DI SOTTOSUOLO

Il Lazio è caratterizzato da una sismicità che si distribuisce lungo fasce (Zone sismogenetiche) a caratteristiche sismiche omogenee, allungate preferenzialmente NW-SE, nella direzione della costa tirrenica e della catena montuosa appenninica. Lungo queste fasce la sismicità si distribuisce in modo omogeneo e gradualmente crescente dalla costa verso l'Appennino. Questo andamento a fasce dei terremoti trova riscontro nella distribuzione degli effetti sismici osservabili nei comuni del Lazio con massimi danneggiamenti nei comuni montani del reatino e del frusinate e gradualmente minori spostandosi verso le aree costiere.

In base <u>all'OPCM 3519/06</u> ed <u>al DM Infrastrutture 14.01.2008</u> sono state individuate zone ben definite di sismicità da rapportare ai valori corrispondenti alle accelerazioni di picco (riportate nella Tabella 9) per cui, in via cautelativa, è stato scelto l'elaborato 84esimo percentile.

Zona Sismica	Sottozona Sismica	Accelerazione con probabilità di superameto pari al 10% in 50 anni (ag)
1		0.25 ≤ ag < 0.278g (valore massimo per il
I		Lazio)
2	А	0.20 ≤ ag < 0.25
2	В	0.15 ≤ ag < 0.20
2	A	0.10 ≤ ag < 0.15
3	В	(valore minimo) $0.062 \le ag < 0.10$

Tabella 9: Suddivisione delle zone sismiche in relazione all'accelerazione di picco su terreno rigido.

Da questa analisi e in base alle <u>D.G.R. del Lazio n. 387/2009</u> e alla <u>D.G.R. del Lazio</u> <u>n. 835/2009</u> è scaturita la nuova classificazione sismica della Regione Lazio, riportata in Figura 48; <u>la recente normativa NTC 2018 non ha apportato modifiche a tale</u> <u>zonazione sismica.</u>

In base questa nuova classificazione sismica, il Comune di Rieti dove è ubicato il sito di indagine è classificato in **Nuova ZONA Sismica 2B**.

Figura 48: Nuova Zonazione sismica Regione Lazio.

Via della Chimica snc – Rieti 🕜 3290586415 geologo.robertoseri@gmail.com - <u>sirius@epap.sicurezzapostale.it</u> P.I. 01215570571 - SRERRT64L25L117T

Per quanto concerne i valori della pericolosità sismica del territorio nazionale, espressi in termini di accelerazione massima del suolo con probabilità di eccedenza del 10% in 50 anni, il Comune di Rieti è caratterizzato da una **ag variabile, compresa fra 0.150g e 0.225g**, come riportato nella Figura 49.

Figura 49: Mappa della pericolosità sismica del territorio nazionale per la regione Lazio.

11.1 Sismicità storica del Comune di Rieti

La massima intensità macrosismica risentita nel Comune di Rieti, tratta dallo studio "Massime intensità macrosismiche osservate nei Comuni Italiani" valutate a partire dalla banca dati macrosismici del GNDT e dai dati del Catalogo dei Forti Terremoti in Italia di ING/SGA (D. Molin, M. Stucchi e G. Valensise 1996) è considerata ≥ IX grado MCS.

Per la ricostruzione della storia sismica del Comune di Rieti è stato consultato il Catalogo Parametrico dei Terremoti Italiani 2015 - Database Macrosismico Italiano 2015 (DBMI15) (<u>https://emidius.mi.ingv.it/CPTI15-DBMI15/</u>); i risultati di questa ricerca sono riportati nel grafico di Figura 50 e nella Tabella 10.

Il Database Macrosismico Italiano fornisce un set omogeneo di intensità macrosismiche provenienti da diverse fonti ed è relativo ai terremoti con intensità massima \geq 5 e d'interesse per l'Italia nella finestra temporale 1000-2014.

Figura 50: Storia sismica del Comune di Rieti.

Int.	Year Mo Da Ho Mi Se	Epicentral area	NMDP	Іо	Mw
5-6	1298 11 30	Rieti	1	5-6	4.4
8	1298 12 01	Monti Reatini	5	9-10	6.26
4-5	1639 10 07	Monti della Laga	39	9-10	6.21
7-8	1703 01 14 18	Valnerina	197	11	6.92
8	1703 02 02 11 05	Aquilano	69	10	6.67
4	1706 11 03 13	Maiella	99	10-11	6.84
5	1719 06 27 06 30	Valnerina	16	8	5.59
6-7	1785 10 09 03 15	Monti Reatini	33	8-9	5.76
F	1786 07 31	Aquilano 7		6	4.89
6	1792 07 20	Ternano	9	6-7	5.06
7	1821 03 22	Rieti	Rieti17Appennino marchigiano1968		5.1
4-5	1873 03 12 20 04	Appennino marchigiano			5.85
4	1878 09 15 07 20	Valle Umbra	34	8	5.46
4-5	1881 03 11 22 50	Valle Umbra	15	5	4.51
4-5	1885 04 10 01 44	Appennino laziale-abruzzese	44	5	4.57
5	1885 06 17 22 34	Monti Reatini	9	7	4.9
3	1889 11 28 19 10	Monti Sibillini	10	4-5	4.19
4	1889 12 08	Gargano	122	7	5.47
2	1891 07 14 05 58	Trevi	9	5	4.16
F	1893 08 02 00 59	Valnerina	84	5-6	4.55
3	1895 11 01	Campagna romana	94	6-7	4.83

Wia della Chimica snc – Rieti 🕜 3290586415 geologo.robertoseri@gmail.com - <u>sirius@epap.sicurezzapostale.it</u> P.I. 01215570571 - SRERRT64L25L117T

61

Ordine Geologi del Lazio n.838

4	1898 04 23 18 22 08.00	Alta Valnerina	14	4-5	3.93
8	1898 06 27 23 38	Reatino	186	8	5.5
4	1898 08 25 16 37 46.00	Valnerina	67	7	5.03
3-4	1899 02 07 12 35 30.00	Appennino umbro-marchigiano	49	4	4.04
3-4	1899 04 21 00 57 55.00	Narni	45	4	3.96
5	1899 07 19 13 18 54.00	Colli Albani	122	7	5.1
3-4	1900 05 19 16 55	Arrone	13	6	4.22
3	1901 04 24 14 20	Sabina	44	8	5.25
4	1901 07 31 10 38 30.00	Sorano	76	7	5.16
6-7	1902 10 23 08 51	Reatino	77	6	4.74
5-6	1903 05 26 21 07	Reatino	2	4-5	3.93
3-4	1903 11 02 21 52	Valnerina	33	6	4.81
3	1904 02 24 15 53 26.00	Marsica	56	8-9	5.68
2-3	1904 02 25 00 29 13.00	Marsica	34	5-6	4.56
3	1905 12 09 21 41	Valle Umbra	42	5	4.24
4	1906 02 05 16 34	Valnerina	55	5	4.41
NF	1909 01 13 00 45	Emilia Romagna orientale	867	6-7	5.36
NF	1909 08 31 13 41	Roma	44	5	4.15
4-5	1910 06 29 13 52	Valnerina	58	7	4.93
2	1910 12 22 12 34	Monti della Laga	19	5	4.3
3	1910 12 26 16 30	Monti della Laga	50	5-6	4.56
4	1911 04 10 09 43	Colli Albani	79	6	4.74
NF	1914 10 27 09 22	Lucchesia	660	7	5.63
6-7	1915 01 13 06 52 43.00	Marsica	1041	11	7.08
4	1915 03 15 11 23	Alta Valle del Chienti	24	7	4.97
5	1915 04 05 06 18 58.00	Valle dell'Aniene	21	6	4.8
5	1915 09 23 18 07	Marsica	18	6	5.07
5	1915 11 11 03 41	Ternano	16	6	4.53
4	1916 05 17 12 50	Riminese	132	8	5.82
F	1916 07 04 05 06	Monti Sibillini	18	6-7	4.82
4	1916 11 16 06 35	Alto Reatino	40	8	5.5
3	1917 05 12 15 34 36.00	Ternano	34	7-8	5.03
4-5	1917 07 08 02	Appennino laziale-abruzzese	44	5-6	4.68
2	1919 06 29 15 06 13.00	Mugello	565	10	6.38
4	1922 12 29 12 22 06.00	Val Roveto	119	6-7	5.24
4	1923 05 13 14 30 59.00	Valle del Salto	21	5	4.33
NF	1924 09 15 02 30	Monti Reatini	15	4-5	3.66
4	1930 07 23 00 08	Irpinia	547	10	6.67
SF	1930 10 30 07 13	Senigallia	268	8	5.83
5	1938 08 12 02 28 33.00	Appennino laziale-abruzzese	55	5-6	4.56
5-6	1948 12 31 03 32	Monti Reatini	95	8	5.42
4-5	1949 01 04 20 55	Monti Reatini	7	6	4.65
3	1949 10 27 19 08	Monti Reatini	9	6-7	4.98
5	1950 09 05 04 08	Gran Sasso	386	8	5.69
4-5	1951 08 08 19 56	Gran Sasso	94	7	5.25

Wia della Chimica snc – Rieti 3290586415 geologo.robertoseri@gmail.com - <u>sirius@epap.sicurezzapostale.it</u> P.I. 01215570571 - SRERRT64L25L117T

Ordine Geologi del Lazio n.838

NF	1957 03 12 16 20	Valnerina	62	5	4.16
3-4	1957 04 11 16 19	Valle del Salto	46	6	4.94
3	1958 06 24 06 07	Aquilano	222	7	5.04
F	1960 03 16 01 52 48.00	Monti della Laga	81	5	4.44
4-5	1961 10 31 13 37	Reatino	84	8	5.09
4	1962 08 30 12 10	Valnerina	35	7	5.02
4-5	1963 02 02 19 34	Reatino	10	6	4.64
4-5	1968 01 04 10 23	Sabina	28	6	4.53
4-5	1970 09 07 14 02 21.00	Appennino umbro-marchigiano	56	5	4.35
3	1971 04 02 01 43 54.00	Valnerina	68	6	4.5
4-5	1972 11 26 16 03	Marche meridionali	73	8	5.48
6	1979 09 19 21 35 37.00	Valnerina	694	8-9	5.83
F	1980 02 28 21 04 40.00	Valnerina	146	6	4.97
4	1980 11 23 18 34 52.00	Irpinia-Basilicata	1394	10	6.81
4	1984 04 29 05 02 59.00	Umbria settentrionale	709	7	5.62
3-4	1984 05 07 17 50	Monti della Meta	911	8	5.86
3	1984 05 11 10 41 49.27	Monti della Meta	342	7	5.47
3	1986 10 13 05 10 00.31	Monti Sibillini	322	5-6	4.46
4	1989 12 22 06 48 13.91	Valle Umbra	114	5	4.44
NF	1990 09 12 02 59 44.87	Valle Umbra	62	5-6	4.12
NF	1992 08 25 02 25 48.38	Aquilano	63	5	4.11
3	1993 06 05 19 16 17.02	Valle del Topino	326	6	4.72
NF	1994 06 02 16 41 23.61	Aquilano	60	4-5	3.99
NF	1994 06 02 17 38 13.82	Aquilano	106	5	4.21
3	1996 10 20 19 06 55.57	Appennino laziale-abruzzese	100	5	4.36
5-6	1997 09 26 00 33 12.88	Appennino umbro-marchigiano	760	7-8	5.66
5-6	1997 09 26 09 40 26.60	Appennino umbro-marchigiano	869	8-9	5.97
5	1997 10 03 08 55 22.07	Appennino umbro-marchigiano	490		5.22
5-6	1997 10 06 23 24 53.29	Appennino umbro-marchigiano	437		5.47
5	1997 10 14 15 23 10.64	Valnerina	786		5.62
4	1997 11 09 19 07 33.27	Valnerina	180		4.87
3	1998 04 05 15 52 21.01	Appennino umbro-marchigiano	395		4.78
4-5	1998 08 15 05 18 08.89	Reatino	233	5-6	4.42
2-3	1999 10 10 15 35 51.91	Alto Reatino	79	4-5	4.21
NF	2000 03 11 10 35 27.49	Valle dell'Aniene	214	6	4.25
3	2000 12 16 07 31 07.66	Ternano	129	5-6	4.29
NF	2001 03 23 00 50 16.08	Sabina	85	5	3.77
3	2005 08 22 12 02 07.40	Costa laziale	57	5-6	4.78
3	2005 12 15 13 28 39.59	Val Nerina	350	5	4.14
4-5	2016 08 24 01 36 32.00	Monti della Laga	221	10	6.18
4	2016 10 26 19 18 07.42	Valnerina	77		6.07
5	2016 10 30 06 40 17.32	Valnerina	379		6.61
5	2017 01 18 10 14 09.90	Aquilano	280		5.7

Tabella 10: Eventi sismici relativi al Comune di Rieti.

La zonazione sismogenetica del territorio nazionale, così come indicato nell'Appendice 2 - Zonazione sismogenetica ZS9, suddivide la regione Lazio in diverse zone sismogenetiche della Catena Appenninica settentrionale e centrale (Figura 51) che, procedendo da E verso W, sono così individuate:

Figura 51: Zonazione sismogenetica della Regione Lazio. Con la stella rossa è indicato il sito di studio.

- la zona 918 è denominata Medio-Marchigiana/Abruzzese ed è caratterizzata da un Mw_{max}¹= 6.37 (non rientra nei confini regionali laziali);
- la zona 919 è denominata Appennino Umbro ed è caratterizzata Mwmax = 6.37 (non rientra nei confini regionali laziali);
- la zona 923 è denominata Appennino Abruzzese ed è caratterizzata Mwmax = 7.06;
- la zona 924 è denominata Molise-Gargano ed è caratterizzata Mwmax = 6.83 (non rientra nei confini regionali laziali);
- la zona 927 è denominata Sannio Irpinia Basilicata ed è caratterizzata Mwmax
 = 7.06 (non rientra nei confini regionali laziali);

¹ Per Mw_{max} si intende magnitudo momento sismico massimo atteso (cautelativo).

- la zona 920 è denominata Val di Chiana-Ciociaria ed è caratterizzata Mwmax = 5.68 (entro cui rientra l'area in studio);
- la zona 921 è denominata Etruria ed è caratterizzata da un Mwmax = 5.91.
- la zona 922 è denominata Colli Albani ed è caratterizzata da un Mwmax = 5.45.

Si tratta di sismi aventi come sorgenti sismogenetiche soprattutto quelle localizzate nelle zone sismiche dell'Italia Centrale (zona sismogenetica 920 dell'Appennino Centrale), vale a dire l'Appennino Umbro-Marchigiano, i Monti Reatini e l'area sabina e ternana. Il database consultato è aggiornato all'anno 2014 e, date le precedenti considerazioni, non si può escludere che il sito abbia risentito anche della ultima crisi sismica che ha colpito l'Italia centrale nel 2016-2017.

Per quanto concerne il sito in studio in esame, è stato consultato il CPTI15 -Catalogo Parametrico dei Terremoti Italiani 2015, che fornisce i dati parametrici omogenei, sia macrosismici, sia strumentali, relativi ai terremoti con intensità massima \geq 5 o magnitudo \geq 4.0 d'interesse per l'Italia nella finestra temporale 1000-2014.

La ricerca è stata eseguita filtrando il catalogo CPTI15 tramite un'area circolare di raggio pari a 30 km avente centro di coordinate geografiche pari a quelle del centro del ponte, corrispondente circa centro dell'area oggetto di studio:

COORDINATE WGS84: LAT: 42.402581°; LONG: 12.871518°

N	Sect	Year	Мо	Da	Но	Mi	Se	EpicentralArea	MainRef	LatDef	LonDef	Imax	Io
62	MA	1298	11	30				Rieti	CFTI4med	42.402	12.86	5-6	5-6
63	MA	1298	12	1				Monti Reatini	CFTI4med	42.575	12.902	10	9-10
93	MA	1349	9	9				Appennino laziale-abruzzese	CFTI4med	42.27	13.118	9	9
240	MA	1502	3	10				Reatino	MOLAL008	42.386	12.949	7	7
282	MA	1519						Reatino	CAMAL011b	42.386	12.949	6	6
532	MA	1689	7	21	9			Reatino	CAMAL011b	42.415	13.076	5	5
533	MA	1689	7	21	11			Reatino	CAMAL011b	42.415	13.076	7	7
766	MA	1752	1	2				Valnerina	CAMAL011b	42.623	12.778	6-7	6-7
915	MA	1785	10	9	3	15		Monti Reatini	CFTI4med	42.536	12.788	8-9	8-9
950	MA	1792	7	20				Ternano	MOLAL008	42.532	12.714	7	6-7
1052	MA	1821	3	22				Rieti	MOLAL008	42.402	12.86	7	7
1503	MA	1885	6	17	22	34		Monti Reatini	DEM0980	42.521	12.844	7	7
1547	MA	1889	4	6	14	30		Sabina	MOLAL008	42.293	12.692	5	5
1583	MA	1892	1	21	20	15		Valle del Salto	MOLAL008	42.231	13.11	5	5
1613	MA	1893	8	2	0	59		Valnerina	CAMAL011b	42.608	13.002	6	5-6
1733	MA	1898	6	27	23	38		Reatino	SPAAL985c	42.414	12.903	8	8
1773	MA	1900	5	19	16	55		Arrone	AMGNDT995	42.583	12.768	7	6
1816	MA	1902	10	23	8	51		Reatino	DEM0980	42.357	12.839	6-7	6
1908	MA	1906	7	1	0	50		Reatino	MOLAL008	42.384	13.141	6	5

I risultati ottenuti dalla ricerca indicano la presenza di 47 terremoti storici.

🆀 Via della Chimica snc – Rieti 🕜 3290586415 🦉 geologo.robertoseri@gmail.com - <u>sirius@epap.sicurezzapostale.it</u> P.I. 01215570571 - SRERRT64L25L117T

Ordine Geologi del Lazio n.838

1979	MA	1909	2	6	8	5		Ternano	MOLAL008	42.562	12.647	6	5
2136	MA	1915	9	23	18	7		Marsica	MOLAL999a	42.415	13.076	7	6
2139	MA	1915	11	11	3	41		Ternano	DEM0980	42.53	12.655	7	6
2194	MA	1917	5	12	15	34	36	Ternano	CFTI4med	42.59	12.641	7-8	7-8
2447	MA	1931	7	28	8	46	38	Ternano	MOLAL008	42.442	12.546	6	6
2542	MA	1938	8	12	2	28	33	Appennino laziale-abruzzese	MOLAL008	42.371	13.063	6	5-6
2641	MA	1948	12	17	21	18	2	Monti Reatini	MOLAL008	42.585	12.844	6-7	5-6
2642	MA	1948	12	31	3	32		Monti Reatini	BERAL013	42.507	12.853	8	8
2643	MA	1949	1	4	20	55		Monti Reatini	BERAL013	42.511	12.848	6	6
2645	MA	1949	1	14	16			Monti Reatini	BERAL013	42.527	12.832	6	5
2652	MA	1949	6	3	8	8		Monti Reatini	MOLAL008	42.515	12.856	5	5
2660	MA	1949	10	27	19	8		Monti Reatini	DEM0980	42.532	12.805	6-7	6-7
2711	MA	1954	3	23	17	55		Collestatte	MOLAL008	42.569	12.727	6	5
2764	MA	1957	4	11	16	19		Valle del Salto	AMGNDT995	42.256	13.079	6	6
2841	MA	1961	10	31	13	37		Reatino	DEM0980	42.407	13.064	8	8
2859	MA	1963	2	2	19	34		Reatino	MOLAL008	42.397	13.038	6	6
2931	MA	1967	12	3	19	49	46	Aquilano	ISC	42.4	13.2		
2935	MA	1968	1	4	10	23		Sabina	MOLAL008	42.341	12.627	D	6
3004	MA	1970	5	25	12	56		Ternano	MOLAL008	42.549	12.702	5	5
3005	MA	1970	5	26	12	5		Ternano	MOLAL008	42.554	12.684	D	5-6
3179	MA	1977	8	25	19	33	29.76	Ternano	ISC	42.624	12.695		
3741	MA	1994	6	2	17	38	13.82	Aquilano	CSTI1.1	42.476	13.226	5	5
3964	MA	1998	8	15	5	18	8.89	Reatino	CSI1.1	42.362	13.056	6	5-6
4037	MA	2000	6	27	6	39	20.91	Reatino	CSI1.1	42.459	12.746		
4058	MA	2000	12	16	7	31	7.66	Ternano	CSI1.1	42.516	12.586	5-6	5-6
4112	MA	2001	10	18	18	9	30.79	Valle del Salto	CSI1.1	42.291	13.153		
4324	MA	2007	10	21	3	55	36.43	Reatino	BSINGV	42.401	12.963		
4434	MA	2010	8	31	7	12	52.44	Aquilano	BSINGV	42.516	13.226		

dove:

N = Numero d'ordine;

Tr= Tipo di record;

Anno, Me, Gi, Or, Mi, Se=Tempo origine;

EA= Denominazione dell'area dei massimi effetti;

Imx=Intensità massima;

Io = Intensità epicentrale;

Lat, Lon= Localizzazione epicentrale.

11.2 Categoria di sottosuolo dalle prove geofisiche

Ai fini di definire l'azione sismica di progetto, considerando che le condizioni stratigrafiche e le proprietà dei terreni indagati sono chiaramente riconducibili alle categorie di sottosuolo definite nelle nuove NTC 18, si fa riferimento all'approccio semplificato che si basa sulla classificazione di sottosuolo in funzione dei valori della

velocità di propagazione delle onde di taglio Vs che si possono calcolare sia mediante

66

prove specifiche o attraverso relazioni empiriche. La classificazione del sottosuolo si

effettua in base alle condizioni stratigrafiche ed ai valori della velocità equivalente di propagazione delle onde di taglio Vseq (m/s), definita dall'espressione:

Equazione 1

$$Vseq = \frac{H}{\sum_{i=1}^{N} \frac{hi}{Vs_{i}t}}$$

dove:

h_i= spessore dell'i-esimo strato;

Vs,i= velocità delle onde di taglio nell'i-esimo strato;

N= numero di strati;

H= profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da VS non inferiore a 800 m/s.

Per i depositi con profondità H del substrato superiore a 30 m, la velocità equivalente Vseq è definita dal parametro Vs30, ottenuto ponendo H=30 m nella precedente espressione e considerando le proprietà degli strati di terreno fino a tale profondità.

Osservando le disposizioni del <u>D.M. 17/01/2018</u>, nel caso in esame, per le indagini svolte nei mesi di Agosto-Settembre 2021 si considera la Vs30 per la prova MASW1 e la Vseq ottenuta dalle prove MASW2 e Down Hole. Pertanto, in base ai risultati delle indagini in situ la Vseq ottenuta è pari a:

- MASW1: Vseq = Vs30 = 240 m/s;
- MASW2: Vseq = 230 m/s;
- DOWN HOLE: Vseq = Vs30 = 201.5 m/s.

Con le NTC del 2018 la stima della *pericolosità sismica di base o locale*, intesa come accelerazione orizzontale massima attesa a_g su suolo rigido, viene definita mediante un approccio <u>"sito dipendente"</u>, ovvero *la stima dei parametri spettrali necessari per la definizione dell'azione sismica sia per la valutazione della sicurezza e sia per il progetto degli interventi*, è calcolata <u>direttamente per il sito in esame</u> (in coordinate geografiche decimali Lat-Long nel sistema di riferimento Ed50).

Le azioni sismiche nei confronti degli stati limite sono individuate riferendosi alle prestazioni della costruzione, e valutate in relazione ad un *periodo di riferimento*, con la seguente relazione:

 $V_r = V_n$ (vita nominale della struttura) x C_u (coeff. della classe d'uso).

Le forme spettrali relative a ciascuno degli stati limite, cui corrispondono determinate *probabilità di superamento nel periodo di riferimento Pvr*, sono definite in condizioni di campo libero a partire dai seguenti parametri su sito di riferimento rigido orizzontale:

- ag o Pga accelerazione massima al sito determinata su un reticolo a maglia inferiore a 10 km (corrispondente all'ordinata spettrale per T=0);
- F_o valore massimo del fattore di amplificazione dello spettro in accelerazione orizzontale;
- T^{*}_c periodo di inizio di tratto a velocità costante dello spettro in accelerazione orizzontale su suolo rigido.

Figura 52: Spettro di risposta.

L'azione tellurica è caratterizzata da tre componenti, due orizzontali (x,y) ed una verticale (z), cui corrispondono due distinti spettri di risposta; salvo nel caso in cui il fabbricato sorga in zone 3 o 4, la componente verticale dello spettro viene trascurata.

Per quanto di competenza del geologo, i parametri necessari per il calcolo sono: **coordinate geografiche (Ed50):** LAT: 42.403557°; LONG: 12.872443°

<u>categoria topografica</u>: T1 – superfici pianeggianti, pendii e rilievi isolati con inclinazione media i $\leq 15^{\circ}$.

categoria di sottosuolo: si veda elaborazione Risposta Sismica Locale.

12 POTENZIALITA' DI LIQUEFAZIONE DEI DEPOSITI

Il sito presso il quale è ubicato il manufatto rientra in una zona di attenzione per instabilità per liquefazione; è stata analizzata la potenzialità di liquefazione dei depositi, intendendo con tale termine quei fenomeni associati alla perdita di resistenza al taglio o ad accumulo di deformazioni plastiche in terreni saturi, prevalentemente sabbiosi, sollecitati da azioni cicliche e dinamiche che agiscono in condizioni non drenate.

La normativa vigente <u>(NTC 2018 cap. 7.11.3.4.2 – Esclusione della verifica a</u> <u>liquefazione</u>) prevede debba essere valutata la suscettibilità del terreno alla liquefazione sulla base di prove in sito geotecniche (SPT/CPT) e/o geofisiche esplorando un numero di verticali adeguato all'importanza dell'opera e all'estensione dell'area di indagine e sufficiente ad accertare la variabilità delle caratteristiche stratigrafiche e geotecniche del deposito.

La verifica a liquefazione può essere omessa quando si manifesti almeno una delle seguenti circostanze:

- 1. Accelerazioni massime attese al piano campagna in assenza di manufatti (condizioni di campo libero) minori di 0,1g.
- 2. Profondità media stagionale della falda superiore a 15 m dal piano campagna, per piano campagna sub-orizzontale e strutture con fondazioni superficiali.
- 3. depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata (N1) 60 > 30 oppure qc1N > 180 dove (N1) 60 è il valore della resistenza determinata in prove penetrometriche dinamiche (Standard Penetration Test) normalizzata ad una tensione efficace verticale di 100 kPa e qc1N è il valore della resistenza determinata in prove penetrometriche statiche (Cone Penetration Test) normalizzata ad una tensione efficace verticale di 100 kPa.
- distribuzione granulometrica esterna alle zone indicate nel caso di terreni con coefficiente di uniformità Uc< 3.5 e alle zone indicate nel caso di terreni con coefficiente di uniformità Uc> 3.5.

12.1 Punto 1 - Accelerazioni massime attese

Da NTC18 si ha che le accelerazioni massime attese al piano campagna in assenza di manufatti (condizioni di campo libero) devono essere minori di 0,1g. Con $V_N = 50$ anni e Cu = 1.5 (per la classe d'uso III), per SLV ag = 0.212 g; **non verificata**.

Stato limite	TR	ag	F0	T*c
SLO	45	0.073	2.476	0.280
SLD	75	0.090	2.443	0.291
SLV	712	0.212	2.422	0.341
SLC	1462	0.265	2.451	0.355

bella	11:	Parametri	sismici	del	sito	in es	ame.
	bella	bella 11:	bella 11: Parametri	bella 11: Parametri sismici	bella 11: Parametri sismici del	bella 11: Parametri sismici del sito	bella 11: Parametri sismici del sito in es

12.2 Punto 2 - Profondità media stagionale della falda

Da NTC18 si ha che la profondità media stagionale della falda deve essere superiore a 15 m dal piano campagna, per piano campagna sub-orizzontale e strutture con fondazioni superficiali.

Durante la fase di esecuzione delle prove si è osservata la presenza della falda a circa -1.50 m; **non verificata.**

12.3 Punto 3 - Resistenze penetrometriche normalizzate

Da NTC18 si ha che per i depositi costituiti da sabbie pulite con resistenza penetrometrica normalizzata (N1) 60 > 30 oppure qc1N > 180 dove (N1) 60 è il valore della resistenza determinata in prove penetrometriche dinamiche (Standard Penetration Test) normalizzata ad una tensione efficace verticale di 100 kPa e qc1N è il valore della resistenza determinata in prove penetrometriche statiche (Cone Penetration Test) normalizzata ad una tensione efficace verticale di 100 kPa.

(N1)60 è il numero di colpi normalizzato definito come segue:

 $(N_1)_{60} = C_N \times N_{60} \text{ con } C_N = \sqrt{(Pa/\sigma'_{vo})} C_N < 1.7 Pa = 101.32 \text{ kPa} \text{ (Liao e Whitman 1986)}$ N'60=NSPT×(ER/60) ×Cs×Cr×Cd

ER/60: Rendimento del sistema di infissione normalizzato al 60% =1.00 (Pilcon)

C_S: Parametro funzione della contro camicia (1.2 se assente) = 1.20

Cd: Funzione del diametro del foro (1 se compreso tra 65-115mm) = 1.00

C_r: Parametro di correzione funzione della lunghezza delle aste = 1.00

qc1N è il valore della resistenza normalizzata ad una tensione efficace verticale di 100 kPa come segue:

- se Ic < 2.6: qc1N =(qc/Pa)*(Pa/s'v0)0.5;
- se Ic > 2.6: qc1N = Q, dove Q = $(qc-\sigma'v0)/\sigma'v0$.

Dalle SPT e dalle DPSH eseguite si osserva che negli strati sottofalda l'(N1)₆₀ è minore del valore indicato da normativa; **pertanto si considera il terzo punto non verificato**.

S1-SPT	Nspt	ER/60	Cs	Cd	Cr	N'60	$Pa/\sigma'v0$	Cn	(N1)60
SPT1	2	1	1.2	1	1	2.4	1.01325	1.006603	2.42
SPT2	38	1	1.2	1	1	45.6	1.01325	1.006603	45.90
S2-SPT	Nspt	ER/60	Cs	Cd	Cr	N'60	$Pa/\sigma'v0$	Cn	(N1)60
SPT1	14	1	1.2	1	1	16.8	1.01325	1.006603	16.91
SPT2	5	1	1.2	1	1	6	1.01325	1.006603	6.04
DPSH1	Nspt	ER/60	Cs	Cd	Cr	N'60	$Pa/\sigma'v0$	Cn	(N1)60

Via della Chimica snc – Rieti 🕜 3290586415⁽²²⁾ geologo.robertoseri@gmail.com - <u>sirius@epap.sicurezzapostale.it</u> P.I. 01215570571 - SRERRT64L25L117T

2 strato	18	1	1.2	1	1	21.6	1.01325	1.006603	21.74
3 strato	3.73	1	1.2	1	1	4.476	1.01325	1.006603	4.51
4 strato	13	1	1.2	1	1	15.6	1.01325	1.006603	15.70
5 strato	22.33	1	1.2	1	1	26.796	1.01325	1.006603	26.97
DPSH2	Nspt	ER/60	Cs	Cd	Cr	N'60	Pa/s'v0	Cn	(N1)60
2 strato	3.77	1	1.2	1	1	4.524	1.01325	1.006603	4.55
2	10 - 1								
3 strato	13.71	1	1.2	1	1	16.452	1.01325	1.006603	16.56
4 strato	13.71 26.62	1 1	1.2 1.2	1 1	1	16.452 31.944	1.01325 1.01325	1.006603 1.006603	16.56 32.15
3 strato 4 strato 5 strato	13.71 26.62 48.89	1 1 1	1.2 1.2 1.2	1 1 1	1 1 1	16.452 31.944 58.668	1.01325 1.01325 1.01325	1.006603 1.006603 1.006603	16.56 32.15 59.06

12.4 Punto 4 - Distribuzione granulometrica

Da NTC18 si ha che la distribuzione granulometrica deve essere esterna alle zone indicate nel caso di terreni con coefficiente di uniformità Uc< 3.5 e alle zone indicate nel caso di terreni con coefficiente di uniformità Uc> 3.5.

Le analisi granulometriche effettuate in laboratorio hanno riportato il coefficiente di uniformità CU > 3.5; pertanto si sono confrontati i fusi granulometrici ottenuti in laboratorio con quelli riportati in Figura 53, che rappresentano il fuso granulometrico dei terreni suscettibili di liquefazione proposti da NTC18 per Uc >3.5.

Vengono di seguito riportati il fuso granulometrico e il confronto con quelli di normativa per ciascun campione sottofalda.

71

CAMPIONI SONDAGGIO S1:

S1-C1: profondità di prelievo tra -5.50 m e -6.00 m; CU = 42.86; confronto con grafico (b) di normativa.

Figura 54: Fuso granulometrico ottenuto dalle analisi di laboratorio per il campione di terreno S1-C1.

Figura 55: Confronto tra i fusi granulometrici proposti da NTC18 per Uc>3.5 (in nero) e la curva granulometrica ottenuta dalle analisi di laboratorio (in rosso) per il campione di terreno S1-C1.

*S*1-*C*2: profondità di prelievo tra -8.50 m e -9.00 m; *CU* = 29.29; confronto con grafico (b) di normativa.

Figura 56: Fuso granulometrico ottenuto dalle analisi di laboratorio per il campione di terreno S1-C2.

Figura 57: Confronto tra i fusi granulometrici proposti da NTC18 per Uc>3.5 (in nero) e la curva granulometrica ottenuta dalle analisi di laboratorio (in rosso) per il campione di terreno S1-C2.

S1-C3: profondità di prelievo tra -15.00 m e -15.50 m; CU = 147.50; confronto con grafico (b) di normativa.

Figura 58: Fuso granulometrico ottenuto dalle analisi di laboratorio per il campione di terreno S1-C3.

Figura 59: Confronto tra i fusi granulometrici proposti da NTC18 per Uc>3.5 (in nero) e la curva granulometrica ottenuta dalle analisi di laboratorio (in rosso) per il campione di terreno S1-C3.

S2-C1: profondità di prelievo tra -3.00 m e -350 m; CU = 51; confronto con grafico (b) di normativa.

Figura 60: Fuso granulometrico ottenuto dalle analisi di laboratorio per il campione di terreno S2-C1.

Figura 61: Confronto tra i fusi granulometrici proposti da NTC18 per Uc>3.5 (in nero) e la curva granulometrica ottenuta dalle analisi di laboratorio (in rosso) per il campione di terreno S2-C1.

Dal confronto fra i fusi granulometrici riportati nelle figure precedenti, si evidenzia che la <u>curva granulometrica ottenuta per i campioni di terreno non è compresa</u> <u>interamente tra i due fusi granulometrici.</u>

Per quanto riguarda i campioni S1-C1 e S1-C2, prelevati in corrispondenza dello strato di sabbia limosa, debolmente argillosa e ghiaiosa e sabbia con limo, debolmente argillosa, la frazione sabbiosa è preponderante ma comunque non si tratta di una sabbia prettamente pulita in quanto la componente limosa e argillosa è presente per circa il 28% (S1C1) e per circa il 31%.

Per quanto riguarda il campione S1-C3, campionato in corrispondenza dello strato di limo con sabbia argilloso, la frazione sabbiosa è presente al 32% mentre la frazione fine (limosa e argillosa) si attesta al 68% (Limo = 47% e Argilla = 21%); è assente la ghiaia.

Per quanto concerne, infine, il campione S2-C1, prelevato in corrispondenza dello strato di limo con sabbia argilloso, la frazione sabbiosa è presente al 33% mentre la frazione fine (limosa e argillosa) si attesta al 66% (Limo = 49% e Argilla = 16%); di poche percentuali è la ghiaia (1%) in questo caso.

Si può ritenere, quindi, che data l'eterogeneità dei depositi alluvionali del Fiume Velino <u>il 4 punto, quindi, non rientra nel campo di possibilità di liquefazione</u> <u>(verificata).</u>

In conclusione non essendo le litologie presenti nel sito in esame completamente interne ai fusi granulometrici indicati nella norma e in considerazione della stratigrafia del sito, si ritiene che i terreni non siano suscettibili di liquefazione e quindi se ne omette la verifica.

13 RISPOSTA SISMICA LOCALE

13.1 Premessa

Nel presente elaborato tecnico sono illustrate le modalità di calcolo - simulazione dello studio di Risposta Sismica Locale (RSL) eseguito nell'area dove si collocano gli interventi volti al completamento della pista ciclabile lungo Ponte Cavallotti, nel Comune di Rieti.

Gli studi di RSL danno indicazioni sull'applicabilità dell'approccio semplificato NTC18; l'applicabilità dell'approccio NTC18 o delle specifiche analisi NTC18 - RSL è garantito dal confronto degli spettri di risposta elastici ottenuti delle simulazioni e di quelli di normativa. La topografia e la stratigrafia dell'area di progetto suggeriscono di valutare le sollecitazioni sismiche con un approccio monodimensionale 1D.

Per la risposta sismica locale si è proceduto con l'utilizzo dei dati informativi sul sottosuolo (stratigrafia e Vs) ricavati dalle prove geognostiche (sondaggi e DPSH) e dalla sismostratigrafia ottenuta dalle prove geofisiche (MASW, Down Hole, HVSR).

Per RSL si intende l'insieme delle modifiche in ampiezza, durata e contenuto in frequenza che un moto sismico, relativo ad una formazione rocciosa di base (R), subisce attraversando gli strati di terreno sovrastanti fino alla superficie libera (S). Tale fenomeno dipende innanzitutto dalle caratteristiche del moto sismico al tetto della formazione di base, nonché dalle caratteristiche geometriche profonde e superficiali dei terreni, dalle proprietà fisiche e meccaniche dei terreni, dalle caratteristiche di permeabilità e dalle condizioni idrauliche al contorno.

Dalla stessa definizione del fenomeno, discende che la risposta sismica locale può modificare sostanzialmente le frequenze dominanti dell'evento. In particolare, può accadere che in corrispondenza di alcune frequenze si abbia un fenomeno di amplificazione, mentre in corrispondenza di altre il segnale sismico si riduca.

13.2 Azione sismica di progetto - Definizione del periodo di ritorno

Nelle NTC18 il periodo di riferimento, che non può essere inferiore a 35 anni, è dato dalla seguente relazione:

$$V_R = V_N \cdot C_U$$

dove: V_R = periodo di riferimento; V_N = vita nominale; C_U = coefficiente d'uso

La vita nominale di un'opera strutturale V_N, secondo le NTC18, è definita come il numero di anni nel quale la struttura, purché soggetta alla manutenzione ordinaria, deve potere essere usata per lo scopo al quale è destinata e viene definita attraverso tre diversi valori, a seconda dell'importanza dell'opera e perciò delle esigenze di durabilità:

- $V_N \le 10$ anni per le opere provvisorie, provvisionali e le strutture in fase costruttiva che però abbiano una durata di progetto ≥ 2 anni.
- $V_N \ge 50$ anni per le opere ordinarie, ponti, infrastrutture e dighe di dimensioni contenute o di importanza normale.
- V_N ≥ 100 anni per grandi opere, ponti, infrastrutture e dighe di grandi dimensioni o di importanza strategica.

<u>Nel caso specifico del progetto in oggetto viene stimata la vita nominale V_N pari a 50 anni.</u>

In presenza di azioni sismiche, con riferimento alle conseguenze di una interruzione di operatività o di un eventuale collasso, le costruzioni sono suddivise in classi d'uso. Le **NTC2018** prevedono **n°4 classi d'uso** a ciascuna delle quali è associato un valore del coefficiente d'uso.

Nel caso in esame vengono prese in considerazione: <u>la Classe d'Uso III a cui è</u> <u>associato il coefficiente d'uso $C_U = 1.5$ </u>: "Costruzioni il cui uso preveda affollamenti significativi. Industrie con attività pericolose per l'ambiente. Reti viarie extraurbane non ricadenti in Classe d'uso IV. Ponti e reti ferroviarie la cui interruzione provochi situazioni di emergenza. Dighe rilevanti per le conseguenze di un loro eventuale collasso".

Tab. 2.4.II – Valori del coefficiente d'uso C_u

	0			
CLASSE D'USO	Ι	Ш	Ш	IV
COEFFICIENTE C _U	0,7	1,0	1,5	2,0

Tabella 13: Valori del coefficiente d'uso Cu [Da NTC 2018].

Una volta ottenuti V_N e C_U , è possibile calcolare il periodo di riferimento VR, che qui vale: **Classe d'Uso III: V_R = 50 * 1.5 = 75 anni**.

Le NTC2018 prendono in considerazione 4 possibili stati limite (SL) individuati facendo riferimento alle prestazioni della costruzione nel suo complesso, includendo gli elementi strutturali, quelli non strutturali e gli impianti: due sono stati limite di esercizio (SLE) e due sono stati limite ultimi (SLU).

Gli stati limite di esercizio sono: **Stato Limite di Operatività** (SLO) - **Stato Limite di Danno** (SLD).

Gli stati limite ultimi sono: **Stato Limite di salvaguardia della Vita** (SLV) - **Stato Limite di prevenzione del Collasso** (SLC).

Le NTC2018, in presenza di azioni sismiche, richiedono le verifiche allo SLO solo per gli elementi non strutturali e per gli impianti di strutture di classi d'uso III e IV (NTC2018, punto 7.1). Lo SLO si utilizza anche come riferimento progettuale per quelle opere che devono restare operative durante e subito dopo il terremoto. Le verifiche allo SLC sono, invece, richieste solo per le costruzioni o ponti con isolamento e/o dissipazione (NTC2018, punto 7.10).

Ad ogni stato limite è associata una probabilità di superamento PVR ovvero la probabilità che, nel periodo di riferimento V_R, si verifichi almeno un evento sismico (n \geq 1) di ag prefissata (ag = accelerazione orizzontale massima del suolo) avente frequenza media annua di ricorrenza 1/T_R (T_R = periodo di ritorno).

Stato limite di esercizio: operatività	SLO	PVR = 81%
Stato limite di esercizio: danno	SLD	PVR = 63%
Stati limite ultimo: salvaguardia della vita	SLV	PVR = 10%
Stati limite ultimo: di prevenzione del collasso	SLC	PVR = 5%

Tabella 14: Stati limite e rispettive probabilità di superamento, nel periodo di riferimento VR.

<u>Nel caso del progetto specifico verranno calcolati SLV, SLD e SLO per quanto</u> <u>concerne la Classe d'Uso III.</u>

Fissati V_R e PVR associata ad ogni stato limite, è possibile calcolare il periodo di ritorno dell'azione sismica T_R , espresso in anni, mediante l'espressione riportata nell'Allegato A delle NTC2018.

Poiché è $V_R = 50$ anni, il tempo di ritorno T_R per lo specifico progetto in oggetto sarà:

Stati limite ultimo: salvaguardia della vita	SLV	TR = 712
Stato limite di esercizio: danno	SLD	TR = 75
Stato limite di esercizio: operatività	SLO	TR = 45

Tabella 15: Stati limite e rispettivi tempi di ritorno, nel periodo di riferimento VR.

13.3 Azione sismica di progetto - Pericolosità sismica di base

Le azioni simiche sulle costruzioni sono valutate a partire dalla pericolosità sismica di base, simulata al sito di riferimento. Per il progetto in studio è stata considerata la **Classe d'uso III con Vn 50 anni**; l'ubicazione della struttura ha le seguenti coordinate:

COORDINATE WGS84: LAT: 42.402581°; LONG: 12.871518°

COORDINATE ED50: LAT: 42.403557°; LONG: 12.872443°

I parametri di pericolosità sismica per T_R diversi da quelli previsti nelle NTC2018, per i nodi della maglia elementare del reticolo di riferimento, sono:

Classe d'uso	Stato limite	Tr[anni]	ag[g]	F0[-]	Tc*[s]	T □ [s]
	SLV	712	0.212	2.422	0.341	2.449
III	SLD	75	0.090	2.443	0.291	1.962
	SLO	45	0.073	2.476	0.280	1.891

79

13.4 Estrazione degli accelerogrammi di input

In base ai dati sopra riportati è stata eseguita una ricerca l'utilizzo dell'interfaccia web del software REXELweb² disponibile sul sito web dell'Engineering Strong Motion database (ESM) per individuare degli accelerogrammi sismo-compatibili con l'area in esame in base ai dati disaggregazione ottenuti per l'area in esame:

Stato limite	Magnitudo M	Distanza R (km)	Figura
SLV	4-7.5	0-40	Figura 62
SLD	4-7.0	0-50	Figura 63
SLO	4-7.0	0-60	Figura 64

Figura 62: Dati di disaggregazione per lo stato limite SLV.

Figura 63: Dati di disaggregazione per lo stato limite SLD.

² Sgobba, S., Puglia, R., Pacor F., Luzi, L., Russo, E., Felicetta, C., Lanzano, G., D Amico, M., Baraschino, R., Baltzopoulos, G., Iervolino, I.

ISTITUTO NAZIONALE DI G	GEOFISICA E VULCANOLOGIA			Istituto Nazionale di Geofisica e Vulcanologia
	Modello di pericolo	sità sismica MPS	504-S1	Disaggregazione di PGA con probabilita di eccedenza del 61% in 50 anni (Coordinate del porto: (at. 42.183 fon. 12.641 - d 20296)
Selezione Happa				80
Probabilità le 30 anni (FSA)		2 /	-837	8.0
Reficie spettrale	3	ywww.	Legenda	7.0
Navigazione Pole	5		 < 0.0250 0.0250-0.050 0.050-0.075 0.075-0.100 0.100-0.125 	
Looke (1997) Consentation for Looker Ander Looker		17	0.125-0.150 0.150-0.175 0.175-0.200 0.200-0.225	
Long-: 12.812		o ^{landa}	0.225-0.250 0.250-0.275 0.275-0.300 0.300-0.350 0.300-0.350	
Ricerca Comune	-	5	0.400-0.450 0.450-0.500 0.500-0.600 0.600-0.700	
Conure Evidentiano Ret: National		5	0.700-0.800 0.800-0.900 0.900-1.000 1.000-1.250 1.250-1.500	3.5 0 10 20 30 40 50 60 78 80 59 100 110 120 130 140 150 160 170 180 190 200 Distance (Km)
			1.500-1.750 1.750-2.000 Copyright	0 1 2 3 4 5 7 9 11 15 20 25 30 40 55%
	A setue burnet & Setue + Sciences	115	TXTET.	- Contributo percentuale alla pericolosita'

Figura 64: Dati di disaggregazione per lo stato limite SLO.

13.4.1 Accelerogrammi di input - SLV

Si riportano qui di seguito i dati di input immessi nel programma REXELweb per l'estrazione del set di accelerogrammi SLV:

Target spectrum	Preliminary search	O Spectrum matching	Ø Refine sear	ch				
Target								
NTC18 - Italian Buildir	ng code (D.M. 2018)							3
Spectrum type			Latitude [°]		Longitude [*]	ag	[g]	
Type 1 - Higher level o	of seismic action	*	42.403557		12.872443	0	.16	
Soil Type	Topography							
A	✓ T1 - flat surf	aces, isolated cliffs and slopes w	vith average slope	angle <= 15°				
Nominal life				Functional type	e	Li	mit state	
50 years - ordinary str	uctures		~	ш			SLV (10%)	
Probability of exceedar	100					Ar	inregation level	
50% in 50 years (72 yr	arel						near	
Target spectrum	Preliminary search	Spectrum matching	ØRefine search	n. N				
Target spectrum	Preliminary search	Spectrum matching	ØRefine search	1				
Target spectrum Component	Preliminary search	Spectrum matching	⊘Refine search	Limit 500			Inferred soil class	
Target spectrum Component one horizontal compo	Preliminary search	Spectrum matching	⊘Refine search	Limit 500			Inferred soil class	
Target spectrum Component one horizontal compo Soil Type	Preliminary search	Spectrum matching	©Refine search	Limit 500 Soil Type	C D E		Inferred soil class	
Target spectrum Component one horizontal compo Soil Type Site class	Preliminary search	Spectrum matching	© Rafine search	Limit 500 Soil Type A B B	C D E		Inferred soil class	
Target spectrum Component one horizontal compo Soil Type Site class F1 [s] o 100000	Preliminary search	Spectrum matching	©Rafine search	Limit 500 Soil Type A B B Instrument typ	C D E	S	Inferred soil class	
Target spectrum Component one horizontal compo Soil Type Site class F1 [s] 0.100000	Preliminary search	Spectrum matching T2 [s] 2.000000	© Rafine search	Limit 500 Soll Type A B B Instrument typ Any	C D E	s	Inferred soil class	
Target spectrum Component one horizontal compo Soil Type Site class T1 [s] 0.100000 CRITERION Magnitude-distance	Preliminary search nent	Spectrum matching T2 [s] 2.000000	© Refine search	Limit 500 Soll Type A B B Instrument typ Any	C D E	s	Inferred soil class Late trigger events tyle of faulting Any	
Target spectrum Component one horizontal compo Soil Type Site class T1 [s] 0.100000 CRITERION Magnitude-distance Type of magnitude	Preliminary search	Spectrum matching T2 [s] 2.000000	© Refine search	Limit S00 Soll Type A B B Instrument typ Any	C D E E	s	Inferred soil class	
Target spectrum Component one horizontal compo Soil Type Site class T1 Is] 0.100000 CRITERION Magnitude-distance Type of magnitude Moment or local mi	Preliminary search	Spectrum matching T2 [s] 2.000000	© Rafine search	Limit 500 Soil Type A ary Any	C D E	\$	Inferred soil class	
Target spectrum Component one horizontal compo Soil Type Site class T1 [s] 0.100000 CRITERION Magnitude-distance Type of magnitude Moment or local mi Miginium event man	Preliminary search nent	Spectrum matching T2 [s] 2.000000	© Refine search	Limit 500 Soil Type A A B A Instrument typ Any	C D E	s Y	Inferred soil class Late trigger events tyle of faulting	
Target spectrum Component one horizontal compo Soil Type Site class T1 [s] 0.100000 CRITERION Magnitude-distance Type of magnitude Moment or local mi Minimum event mag 4	Preliminary search nent agnitude nitude	Spectrum matching T2 [s] 2.000000	© Rafine search	Limit 500 Soll Type A B B Instrument typ Any Maximum ever 7.5	C D E C	\$ 	Inferred soil class	
Target spectrum Component one horizontal compo Soil Type Site class T1 [s] 0.100000 CRITERION Magnitude-distance Type of magnitude Moment or local ma Minimum event mag 4	Preliminary search nent agnitude nitude	Spectrum matching T2 [s] 2.000000	© Rafine search	Limit 500 Soll Type A B B Instrument typ Any Maximum eve 7.5	C D E C	\$ •	Inferred soil class	
Target spectrum Component one horizontal compo Soil Type Site class T1 [s] 0.100000 CRITERION Magnitude-distance Type of magnitude Moment or local mi Minimum event mag 4 Minimum epicentral	Preliminary search inent agnitude nitude distance [km]	Spectrum matching	© Rafine search	Limit 500 Soll Type A B B Instrument typ Any Maximum even 7.5 Maximum epen	C D E C Pee	\$	Inferred soil class Late trigger events tyle of faulting	

Sono stati individuati i seguenti accelerogrammi sismo-compatibili con l'area in esame relativamente allo SLV:

Nome INPUT	Codice identificativo INPUT
3A.MZ63HNE.D.EMSC-20161030_0000029.ACC.MP	1
E.FRC.00.HNN.D.IT-1976-0030.ACC.MP	2
IT.AQA.00.HNE.D.IT-2009-0009.ACC.MP	3
IT.BSC.00.HNN.D.IT-1980-0012.ACC.MP	4
IT.MSCT.00.HGE.D.EMSC-20170118_0000037.ACC.MP	5
IT.NRC.00.HGE.D.EMSC-20161026_0000077.ACC.MP	6
IT.NRC.00.HGE.D.EMSC-20161026_0000095.ACC.MP	7

Tabella 16: Accelerogrammi sismo-compatibili con l'area in esame relativamente allo SLV.

Figura 65: Combinazione dei 7 accelerogrammi ottenuti (SLV).

13.4.2 Accelerogrammi di input - SLD

Si riportano qui di seguito i dati di input immessi nel programma REXELweb per l'estrazione del set di accelerogrammi SLD:

Target spectrum	Preli	minary search	Spectrum matchi	ng	Refine search					
Target										
NTC18 - Italian Buil	ding code	(D.M. 2018)								
Spectrum type					Latitude [*]		Longitude [?]		ag [g]	
Type 1 - Higher leve	l of seism	nic action		~	42.403557		12.872443		0.16	
Soil Type		Topography								
A	~	T1 - flat surfa	ces, isolated cliffs and	l slopes v	vith average slope	angle <= 15*				
Nominal life						Functional ty	ype		Limit state	
50 years - ordinary	structures	5			~	ш		~	SLD (63%)	
Probability of exceed	lance								Aggregation level	
50% in 50 years (73	years)							~	mean	

RexelWEB	Ok - loaded step#3.2

Target spectrum	Preliminary search	Spectrum matching	Refine search				
Component				Limit			
one horizontal com	ponent		*	500		Late trigger events	
Soil Type				Soil Type			
Site class			~		E		
T1 [8]		T2 [s]		Instrument type		Style of faulting	
0.100000	~	2.000000	~	Any	~	Any	
CRITERION							
Magnitude-distance	5			× 1			
Type of magnitude	1						
Moment or local	magnitude		*				
	amitude			Maximum event magnitude			
Minimum event m	allunar			3			
Minimum event m	alleringer .			th			
Minimum event m 4 Minimum epicentr	al distance [km]			Maximum epicentral distance ()	(m)		

Sono stati individuati i seguenti accelerogrammi sismo-compatibili con l'area in esame relativamente allo SLD:

Nome INPUT	Codice identificativo INPUT
3A.MZ27HNE.D.EMSC-20161026_0000095.ACC.MP	1
IT.ALT.00.HNE.D.IT-1980-0012.ACC.MP	2
IT.ALT.00.HNN.D.IT-1980-0012.ACC.MP	3
IT.AQK.00.HNN.D.IT-2009-0102.ACC.MP	4
IT.CSC.00.HNE.D.IT-1997-0137.ACC.MP	5
IT.GSA.00.HNE.D.IT-2009-0009.ACC.MP	6
IT.MRM.00.HGE.D.IT-2012-0061.ACC.MP	7

Tabella 17: Accelerogrammi sismo-compatibili con l'area in esame relativamente allo SLD.

Figura 66: Combinazione dei 7 accelerogrammi ottenuti (SLD).

13.4.3 Accelerogrammi di input – SLO

Si riportano qui di seguito i dati di input immessi nel programma REXELweb per l'estrazione del set di accelerogrammi SLO:

Target spectrum Prelin	minary search	Spectrum matching	Refine search					
Target								
NTC18 - Italian Building code	(D.M. 2018)							
Spectrum type			Latitude [°]		Longitude [*]	ag [g]		
Type 1 - Higher level of seism	ic action	~	42.403557		12.872443	0.16		
Soil Type	Topography							
A 👻	T1 - flat surf	faces, isolated cliffs and slopes v	with average slope	angle <= 15°				
Nominal life				Functional tyr	ne	Limit s	state	
50 years - ordinary structures			~			SLO	(81%)	
Prohability of exceedance						Anner	entine level	
50% in 50 years (72 years)						Aggre	gation leves	
Target spectrum Prelim	ninary search	Spectrum matching	Refine search					
Target spectrum Ptelim	ninary search	Spectrum matching	Refine search	1 mate				
Target spectrum Prelim	ninary search	Spectrum matching	Refine search	Limit		Infe	erred soil class	
Target spectrum Prelim Component one horizontal component	ninary search	Spectrum matching	Refine search	Limit 500		Infe Late	erred soil class	
Target spectrum Prefin Component one horizontal component Sail Type	ninary search	Spectrum matching	Refine search	Limit 500 Soil Type	C D E	infe Late	erred soil class	
Target spectrum Prelim Component one horizontal component Soil Type Site class	ninary search	Spectrum matching	Refine search	Limit 500 Soil Type A M B M	C D E	Infe Late	erred soil class	
Target spectrum Prelim Component one horizontal component Soil Type Site class	ninary search	Spectrum matching	Refine search	Limit 500 Soil Type A B D Instrument typ	C D E	Infe Lats Style (erred soil class	
Target spectrum Prelim Component one horizontal component Soil Type Site class F1 [s] 0.100000	ninary search	Spectrum matching T2 [s] 2.000000	Refine search	Limit 500 Soil Type A B B Instrument typ Any	C D E pe	Inte Late Style Any	erred soil class trigger events of faulting	
Target spectrum Prelim Component one horizontal component Soil Type Site class F1 [s] 0.100000 CRITERION	ninary search	Spectrum matching T2 Isl 2.000000	Refine search	Limit 500 Soil Type A B B Instrument typ Any	C D E	Infe Late Style (Any	erred soil class	
Target spectrum Prefin Component one horizontal component Soil Type Site class T1 [s] 0.100000 CRITERION Magnitude-distance	ninary search	Spectrum matching	Refine search	Limit 500 Soil Type A B D Instrument typ Any	C D E	Infe Late Style (Any	erred soil class	
Target spectrum Prelin Component one horizontal component Soil Type Site class T1 [s] 0.100000 CRITERION Magnitude-distance Type of magnitude	ninary search	Spectrum matching T2 Iel 2.000000	Refine search	Limit 500 Soil Type A B B Instrument ty Any	C D E	Infe Lats Style	erred soil class	
Target spectrum Prelim Component one horizontal component Soil Type Site class F1 [s] 0.100000 CRITERION Magnitude-distance Type of magnitude Moment or local magnitude	ninary search	Spectrum matching T2 [e] 2.000000	Refine search	Limit 500 Soil Type A B B Instrument ty Any	C D E C	Infe Lats Style (Any	erred soil class	
Target spectrum Prelim Component one horizontal component Soil Type Site class F1 [s] 0.100000 CRITERION Magnitude-distance Type of magnitude Moment or local magnitude	ninary search	Spectrum matching T2 [s] 2.000000	Refine search	Limit 500 Soil Type A B B Instrument Iy Any Maximum ev	C D E	Infe Late Style (Any	erred soil class	
Target spectrum Prelim Component one horizontal component Soil Type Site class F1 [6] 0.100000 CRITERION Magnitude-distance Type of magnitude Moment or local magnitude Minimum event magnitude 4	ninary search	Spectrum matching T2 [s] 2.000000	Refine search	Limit 500 Soil Type A B B Instrument typ Any Maximum ev 7	C D E	Infe Late Style (Any	erred soil class	
Target spectrum Prelim Component one horizontal component Soil Type Site class F1 [s] 0.100000 CRITERION Magnitude-distance Type of magnitude Moment or local magnitude 4 Minimum epicentral distance	ninary search	Spectrum matching T2 [s] 2.000000	Refine search	Limit 500 Soil Type A B B Instrument by Any Maximum ev 7 Maximum ep	Pe	Infe Late Style Any	erred soil class	

Sono stati individuati i seguenti accelerogrammi sismo-compatibili con l'area in esame relativamente allo SLO:

Nome INPUT	Codice identificativo INPUT
IT.ALT.00.HNN.D.IT-1980-0012.ACC.MP	1
IT.BZZ.00.HNE.D.IT-2009-0102.ACC.MP	2
IT.CSC.00.HGE.D.EMSC-20161026_0000095.ACC.MP	3
IT.LSS.00.HGN.D.EMSC-20161030_0000029.ACC.MP	4
IT.MRM.00.HGN.D.IT-2012-0061.ACC.MP	5
IT.MTL.00.HGE.D.EMSC-20161030_0000029.ACC.MP	6
IT.TER.00.HGE.D.EMSC-20161030_0000029.ACC.MP	7

Tabella 18: Accelerogrammi sismo-compatibili con l'area in esame relativamente allo SLO.

Figura 67: Combinazione dei 7 accelerogrammi ottenuti (SLO).

13.5 Morfologia dell'area e sezione topografica selezionata

Il lotto in studio è localizzato in Località Ponte Cavallotti ad un'altezza topografica compresa fra 3964-396 m s.l.m.; in particolare è situato in corrispondenza dell'alveo del Fiume Velino. Da un punto di vista normativo, rifacendosi alle NTC2018 ed in particolare a quanto riportato nel paragrafo 3.2.2, l'area di progetto è identificabile come **Categoria Topografica "T1"** (vedi tabella seguente - estratto NTC2018).

Categoria	Caratteristiche della superficie topografica
T1	Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°
T2	Pendii con inclinazione media i > 15°
T3	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media $15^\circ \le i \le 30^\circ$
T4	Rilievi con larghezza in cresta molto minore che alla base e inclinazione media i > 30°

Figura 68: Stralcio paragrafo 3.2.2 NTC2018 - Tab. 3.2. III "Categorie topografiche".

13.6 Modello geologico-sismostratigrafico e risultati

Sulla base del cosiddetto volume significativo di terreno interessato dall'opera in esame, viene definita una stratigrafia di progetto che rappresenta l'andamento delle singole lenti di terreno in una sezione verticale. Nella Tabella 19 si riporta la parametrizzazione litostratigrafica e sismica utilizzata per la modellazione.

Il modello geologico-geotecnico e sismostratigrafico completo del sito è stato individuato utilizzando come profilo sismostratigrafico di riferimento quello ottenuto mediando le sismostratigrafie ricavate dalle prove geofisiche e i valori ricavati dalle prove penetrometriche e dalla bibliografia.

Nella tabella si riporta la parametrizzazione litostratigrafica e sismica utilizzata per la modellazione.

I profili sismostratigrafici sono stati manipolati matematicamente attraverso la regressione lineare per ottenere una stima della profondità del substrato sismico (da normative vigenti il substrato sismico è definito da vs \geq 800 m/s). In base a tale elaborazione, il bedrock sismico si collocherebbe ad una quota circa pari a 40 m piano campagna.

Prendendo in esame questo dato e tenendo presente l'assetto geologicostratigrafico del sito, è stato ritenuto opportuno fissare il bedrock sismico per il calcolo della RSL ad una profondità di -42 m da p.c.; nell'ambito degli studi di quota di Microzonazione Sismica di Livello 3 condotti dallo Scrivente questa profondità rappresenta la quota di rinvenimento delle ghiaie che, come attestato nel corso degli studi, rappresentano il substrato sismico di questa microzona (2009) di Rieti.

Profondità (m)	Spessore (m)	Descrizione	Vs (m/s)
0.00	6.70	Sabbia limosa deb. argillosa e ghiaiosa	127.80
6.70	6.10	Alternanza di sabbie e limi debolmente argillosi	190.60
12.80	6.30	Ghiaia in matrice sabbiosa	289.90
19.10	7.40	Limo con sabbia argilloso passante ad argilla debolmente limosa	374.50
26.50	5.80	Limo con sabbia argilloso passante ad argilla debolmente limosa	581.40
32.30	9.70	Depositi alluvionali	715.00
42.00	Half-Space	Bedrock	800.00

Tabella 19: Parametrizzazione sismica.

Nella Tabella 20 si riporta la parametrizzazione litostratigrafica e sismica utilizzata per la modellazione:

Strato	Descrizione	Peso di unità di volume [kN/m ³]	Curva decadimento G/Gmax Model	Curva decadimento Damping Model
Strato (1)	Sabbia limosa deb. argillosa e ghiaiosa	21.67	SA - sabbie debolmente argillose poco addensate	SA - sabbie debolmente argillose poco addensate
Strato (2)	Alternanza di sabbie e limi debolmente argillosi	20.55	LSA-Limi sabbiosi localmente argillosi	LSA-Limi sabbiosi localmente argillosi
Strato (3)	Ghiaia in matrice sabbiosa	16.80	GS-ghiaie da fini a grossolane in matrice sabbiosa	GS-ghiaie da fini a grossolane in matrice sabbiosa

o	7
Ø	/

Strato (4)	Limo con sabbia argilloso passante ad argilla debolmente limosa	19.98	LSA-Limi sabbiosi localmente argillosi	LSA-Limi sabbiosi localmente argillosi
Strato (5)	Depositi alluvionali	19.98	Sabbie alluvionali	Sabbie alluvionali
	T I II 00 D			

Tabella 20: Parametrizzazione fisica e curve dinamiche.

Per una maggiore accuratezza del dato si è provveduto ad elaborare degli spettri medi di analisi RSL, per tutti gli stati limite, calcolati a piano campagna (0 m) e al probabile piano posa delle fondazioni, che è stato impostato a -1 m da p.c. al fine di valutarne le possibili variazioni.

I grafici riportanti gli spettri medi ricavati e quelli normalizzati, sovrapposti a quelli relativi a tutte le categorie di sottosuolo per tutti gli stati limite a 0/-1 m hanno gli stessi coefficienti sismici perché il $\Delta(z)$ è talmente minimo che, in questo caso, **non apporta variazioni apprezzabili all'andamento e alle caratteristiche degli spettri elaborati.** Si è ritenuto opportuno inserire in relazione solo gli spettri RSL calcolati a - 1 m.

Di seguito si riporta il grafico dello spettro medio ricavato e dello spettro normalizzato con <u>"regolarizzazione totale"</u> sovrapposti a quelli relativi a tutte le categorie di sottosuolo per gli stati limite analizzati a -1.00 m da piano campagna. <u>Utilizzando la regolarizzazione totale, lo spettro è totalmente sotteso dalla forma regolarizzata per ogni valore di periodo ma soprattutto in corrispondenza del picco nel tratto a velocità costante (plateau). Si tratta di una metodologia cautelativa.</u>

Per una maggiore accuratezza dei dati forniti verranno riportati in relazione anche i grafici dei medesimi spettri RSL normalizzati con <u>"regolarizzazione parziale"</u> per tutti e tre gli stati limite a -1.00 m da piano campagna <u>secondo le disposizioni</u> <u>fornite dall' Ordinanza n. 55 del 24 aprile 2018,</u> commissariato del governo per la ricostruzione nei territori interessati dal sisma del 24 agosto 2016.

Sarà cura del progettista esecutivo valutare la normalizzazione da utilizzare per i calcoli strutturali perché ritenuta più rappresentativa.

13.7 Risultati

13.7.1 SLV – Risultati normalizzazione totale

Per quanto concerne lo stato limite SLV, in Figura 69, si riporta il grafico degli spettri di tutte le elaborazioni e lo spettro della mediana +/- log standard deviation.

Di seguito, in Figura 70, si riporta il grafico dello spettro medio ricavato e di quello normalizzato, sovrapposti a quelli relativi a tutte le categorie di sottosuolo per l'SLV a -1.00 m.

Figura 69: Spettro RSL a -1.00 m da p.c. per SLV.

Come si deduce dall'analisi dei grafici, lo spettro medio relativo allo SLV -1.00 m presenta un picco di 0.851 in corrispondenza del periodo di 0.45 s.

I valori ottenuti dalla normalizzazione sono i seguenti:

ag=	0.212
S=	1.657
F0=	2.422
SeTmax=	0.851
Тв	0.190
Tc	0.540
TD	2.449

13.7.2 SLV - Risultati normalizzazione parziale

Di seguito, in Figura 71, si riporta il grafico dello spettro medio ricavato e di quello normalizzato applicando il metodo proposto nell'Ordinanza n. 55 del 24 aprile 2018, sovrapposto alle categorie di sottosuolo di normativa per lo stato limite SLV a -1.00 m.

Wia della Chimica snc – Rieti 🕜 3290586415 geologo.robertoseri@gmail.com - <u>sirius@epap.sicurezzapostale.it</u> P.I. 01215570571 - SRERRT64L25L117T

Come si deduce dall'analisi dei grafici, lo spettro medio relativo allo SLV presenta un picco di valore 0.794 in corrispondenza del periodo di 0.28 s che è stato tagliato con la regolarizzazione come da ordinanza. I valori ottenuti dalla regolarizzazione con l'ord. 55 sono i seguenti:

PARAMETRI SISMICI OTTENUTI			
IN BASE ALL'ORD. 55			
ag (g)	0.212		
amax (g)	0.347		
Sa max (g)	0.794		
T (Sa max)	0.279		
Sa medio (g)	0.754		
Sv max (m/s)	0.651		
T (Sv max)	0.543		
Sv medio (m/s)	0.662		
Tb	0.187		
Тс	0.562		
Td	2.990		
Fo	2.200		
Ss	1.639		

Si determina il parametro F0 come rapporto SAm/amax con amax che equivale al punto di ancoraggio a T=0 dello spettro di output.

Noti i parametri indipendenti dalle condizioni di sito è possibile, infine, ricavare il parametro Ss come amax/ag dove ag è il valore fisso 0.212 ricavato dal file del ministero "Spettri", mentre amax è calcolata da analisi di risposta locale secondo ordinanza 55' (0.347).

Segue che: Ss = amax/ag = 0.347/0.212 = 1.639

13.7.3 SLD - Risultati normalizzazione totale

Per quanto concerne lo stato limite SLD in Figura 72 si riporta il grafico degli spettri di tutte le elaborazioni e lo spettro della mediana +/- log standard deviation.

Di seguito, in Figura 73, si riporta il grafico dello spettro medio ricavato e di quello normalizzato, sovrapposti a quelli relativi a tutte le categorie di sottosuolo per l'SLD a -1.00 m.

Come si deduce dall'analisi dei grafici, lo spettro medio relativo allo SLD -1.00 m presenta un picco di 0.526 in corrispondenza del periodo di 0.53 s.

ag=	0.090
S=	2.392
F0=	2.443
SeTmax=	0.526
TB	0.190
T _C	0.560
TD	1.962

I valori ottenuti dalla normalizzazione sono i seguenti:

13.7.4 SLD – Risultati normalizzazione parziale

Di seguito, in Figura 71, si riporta il grafico dello spettro medio ricavato e di quello normalizzato applicando il metodo proposto nell'Ordinanza n. 55 del 24 aprile 2018, sovrapposto alle categorie di sottosuolo di normativa per lo stato limite SLD a -1.00 m.

Come si deduce dall'analisi dei grafici, lo spettro medio relativo allo SLD presenta un picco di valore 0.489 in corrispondenza del periodo di 0.26 s che è stato tagliato con la regolarizzazione come da ordinanza.

Figura 74: Confronto tra lo spettro medio SLD -1 m e gli spettri di normativa.

PARAMETRI SISMICI OTTENUTI IN BASE ALL'ORD. 55			
ag (g)	0.090		
amax (g)	0.178		
Sa max (g)	0.486		
T (Sa max)	0.263		
Sa medio (g)	0.454		
Sv max (m/s)	0.337		
T (Sv max)	0.481		
Sv medio (m/s)	0.337		

I valori ottenuti dalla regolarizzazione con l'ord. 55 sono i seguenti:

Tb	0.158
Тс	0.475
Td	2.312
Fo	2.552
Ss	1.977

Si determina il parametro F0 come rapporto SAm/amax con amax che equivale al punto di ancoraggio a T=0 dello spettro di output.

Noti i parametri indipendenti dalle condizioni di sito è possibile, infine, ricavare il parametro Ss come amax/ag dove ag è il valore fisso 0.090 ricavato dal file del ministero "Spettri", mentre amax è calcolata da analisi di risposta locale secondo ordinanza 55' (0.178).

Segue che: Ss = amax/ag = 0.178/0.090 = 1.977

13.7.5 SLO – Risultati normalizzazione totale

Per quanto concerne lo stato limite SLO in Figura 75 si riporta il grafico degli spettri di tutte le elaborazioni e lo spettro della mediana +/- log standard deviation.

Di seguito, in Figura 76, si riporta il grafico dello spettro medio ricavato e di quello normalizzato, sovrapposti a quelli relativi a tutte le categorie di sottosuolo per l'SLO a -1.00 m. Come si deduce dall'analisi dei grafici, lo spettro medio relativo allo SLO -1.00 m presenta un picco di 0.449 in corrispondenza del periodo di 0.20 s.

I valori ottenuti dalla normalizzazione sono i seguenti:

ag=	0.073
S=	2.482

F0=	2.476
SeTmax=	0.449
T_B	0.150
Tc	0.410
TD	1.891

Figura 76: Confronto tra spettro medio SLO -1.00 m e spettri di normativa.

13.7.6 SLO – Risultati normalizzazione parziale

Di seguito, in Figura 77 si riporta il grafico dello spettro medio ricavato e di quello normalizzato applicando il metodo proposto nell'Ordinanza n. 55 del 24 aprile 2018, sovrapposto alle categorie di sottosuolo di normativa per lo stato limite SLO a -1.00 m.

Come si deduce dall'analisi dei grafici, lo spettro medio relativo allo SLO presenta un picco di valore 0.429 in corrispondenza del periodo di 0.19 s che è stato tagliato con la regolarizzazione come da ordinanza.

PARAMETRI SISMICI OTTENUTI		
IN BASE ALL'ORD. 55		
ag (g)	0.073	
amax (g)	0.134	
Sa max (g)	0.429	
T (Sa max)	0.194	
Sa medio (g)	0.346	
Sv max (m/s)	0.264	

I valori ottenuti dalla regolarizzazione con l'ord. 55 sono i seguenti:

T (Sv max)	0.481
Sv medio (m/s)	0.270
Tb	0.167
Тс	0.500
Td	2.137
Fo	2.572
Ss	1.841

CLASSE D'USO III - CAT. TOPOGRAFICA T1 SPETTRO DI RISPOSTA ELASTICO IN ACCELERAZIONE STATO SLO A -1 m

Si determina il parametro F0 come rapporto SAm/amax con amax che equivale al punto di ancoraggio a T=0 dello spettro di output.

Noti i parametri indipendenti dalle condizioni di sito è possibile, infine, ricavare il parametro Ss come amax/ag dove ag è il valore fisso 0.073 ricavato dal file del ministero "Spettri", mentre amax è calcolata da analisi di risposta locale secondo ordinanza 55' (0.134).

Segue che: Ss = $\frac{amax}{ag} = 0.134/0.073 = 1.841$

14 MODELLO GEOLOGICO E CONSIDERAZIONI CONCLUSIVE

In ottemperanza al <u>D.M. 17/01/2018</u> ed ai sensi <u>del Regolamento regionale 26</u> <u>Ottobre 2020 n. 26 e ss.mm.ii.</u> "Regolamento regionale per la semplificazione e l'aggiornamento delle procedure per l'esercizio delle funzioni in materia di previsione del rischio sismico. Abrogazione del regolamento regionale 13 luglio 2016, n. 14 e successive modifiche" è stata redatta la presente relazione geologica a corredo della progettazione definitiva, esecutiva, coordinamento della sicurezza in fase di progettazione ed esecuzione e direzione lavori per l'intervento: Dpcm 25 Maggio 2016 - Parco Circolare Diffuso - Intervento 15 - Completamento Pista Ciclabile da eseguirsi a Rieti presso il Ponte Cavallotti

Per la valutazione del modello geologico e sismico è stato eseguito il rilevamento geologico dei luoghi integrato poi dai dati bibliografici e cartografici; sono state realizzate dalla Società GEO 3D S.r.l. specifiche prove in sito e i dati di queste indagini vengono utilizzati per caratterizzare il terreno in esame e per la ricostruzione del profilo sismostratigrafico del sottosuolo.

Nel dettaglio sono state eseguite le seguenti indagini:

- N°1 sondaggio geognostico a carotaggio continuo (S1) spinto fino alla profondità di -30.00 m e attrezzato a Down Hole;
- N°1 sondaggio geognostico a carotaggio continuo (S2) spinto fino alla profondità di -15.00 m;
- N°4 prove penetrometriche dinamiche SPT in foro di sondaggio, di cui n°2 eseguite entro il foro di sondaggio S1 e n°2 eseguite entro il foro di sondaggio S2;
- N°4 campioni di terreno da sottoporre alle analisi di laboratorio geotecnico, di cui N°3 prelevati durante la perforazione del sondaggio geognostico S1 e N°1 prelevato durante la perforazione del sondaggio geognostico S2;
- N°2 prove geofisiche indirette MASW;
- N°2 misure di rumore sismico ambientale HVSR;
- N°1 prova geofisica diretta Down Hole.

Le indagini eseguite hanno permesso di definire la stratigrafia del terreno che interagisce con l'opera in progetto. Si evidenzia la seguente stratigrafia:

<u>Stratigrafia Sondaggio S1:</u>

- Dal p.c. a -0.50 m: Suolo limoso-sabbioso avana.
- Da -0.50 m. a -6.00 m: Sabbia limosa debolmente argillosa e ghiaiosa, di colore grigio olivastro, sciolto.
- Da -6.00 m a -10.00 m: Alternanza di sabbie e limi, debolmente argillosi di colore grigio olivastro.
 - Da -6.00 m a -7.50 m limi sabbiosi grigi poco consistenti.
 - Da -7.50 m a -7.80 m sabbie grigie medio-fini, sciolte.
 - Da -7.80 m a -8.10 m è presente un trovante di legno torboso.
 - Da -8.10 m a -9.00 m limi sabbiosi grigi poco consistenti.
 - Da -9.00 m a -9.90 m sabbie grigie medio-fini, sciolte.
 - Da -9.90 m a -10.00 m è presente un trovante di legno torboso.
- Da -10.00 m a -13.00 m: Ghiaia in matrice sabbiosa, grossolana, ad elementi calcarei arrotondati, con diametro da 0.5 a 3.0 cm.
- Da -13.00 m a -30.00 m: Limo con sabbia argilloso di colore grigio olivastro, molle e poco plastico passante ad argilla grigia debolmente limosa, plastica e compatta. Nell'ultimo tratto aumenta la componente sabbiosa a granulometria medio-fine, sciolte.

<u>Stratigrafia Sondaggio S2:</u>

- Dal p.c. a -3.00 m: Terreno di riporto in matrice limoso-argilloso con inclusi calcarei di pezzatura medio-grossa e laterizi. Da -1.50 m la pezzatura degli inclusi diventa minore ma resta diffusa la presenza di laterizi di piccole dimensioni.
- Da -3.00 m. a -8.50 m: Alternanza di sabbie, limi e argille di colore variabile dal marrone-avana al grigio olivastro.
 - Da -3.00 m a -4.00 m limo con sabbia argilloso di colore grigio olivastro, molto consistente, plastico.
 - Da -4.00 m a -6.00 m limo avana compatto con piccoli inclusi calcarei, leggermente plastico.
 - Da -6.00 m a -7.00 m argilla limosa debolmente ghiaiosa con inclusi millimetrici calcarei e frustoli carboniosi.
 - Da -7.00 m a -8.50 m sabbia avana fine.

.838

98

- Da -8.50 m a -14.40 m: Argilla sabbiosa avana plastica e compatta. Da -12.00 m a -13.00 m è presente un orizzonte di limo avana poco consistente.
- Da -14.40 m a -14.50 m: Travertino.
- Da -14.50 m a -14.80 m: Argilla grigia compatta, poco plastica.
- Da -14.80 m a -15.00 m: Sabbia travertinosa.

Si riscontra quindi una variazione laterale dei depositi legata soprattutto all'attività di erosione e accumulo del Fiume Velino: per quanto concerne la <u>spalla</u> <u>settentrionale del ponte</u>, come si è dedotto dal sondaggio S2, l'assetto stratigrafico è costituito da un primo orizzonte di terreno di riporto, spesso circa 3.00 m, poggiante sulla coltre di depositi alluvionali prevalentemente di natura sabbiosa, limosa e argillosa. A circa -14.40 m si assiste al passaggio dai terreni di copertura alluvionali al travertino, dapprima con un trovante di travertino litoide, poi con delle argille grigiastre, di probabile natura residuale, e a fondo foro sono presenti le sabbie travertinose.

Per quanto riguarda la <u>spalla meridionale del ponte</u> le indagini eseguite hanno evidenziato che questa porzione della struttura poggia fino a -30.00 m sui depositi alluvionali del Fiume Velino, rappresentati prevalentemente da sabbie, limi e argille e, in maniera subordinata, da ghiaie. Fino alla profondità investigata non è stato riscontrato il travertino, probabilmente per il fatto che lungo la sponda meridionale il Fiume Velino abbia eroso maggiormente i travertini e, in aggiunta, potrebbero essersi accumulati volumi più ingenti di alluvioni.

È stato possibile definire i parametri geotecnici del terreno tramite l'analisi di laboratorio dei campioni prelevati, l'esecuzione e l'elaborazione delle prove geotecniche unite agli studi di bibliografia.

La sintesi dei dati acquisiti, riportati negli allegati, ha permesso di determinare i principali parametri di ogni singola formazione individuata, che vengono qui di seguito riportati. Gli orizzonti ottenuti dalle indagini sono stati accorpati in 4 strati. Dai dati ottenuti dall'elaborazione e dalla bibliografia, sono stati scelti i parametri medi, sarà dunque, compito del progettista individuare i parametri caratteristici.

SABBIE LIMOSE DEBOLMENTE ARGILLOSE E GHIAIOSE (S1C1)		
Angolo d'Attrito	$\phi = 38^{\circ}$	
Coesione	C = 0 kPa	
Peso di Volume naturale	$\gamma_{n} = 21.67 \text{ kN/m}^{3}$	
	σ 0-49 E _{ed} 2791 KPa; σ 49-98 E _{ed} 5298 KPa	
Moduli Edometrici	σ 98-196 E_{ed} 8521 KPa; σ 196-392 E_{ed} 12413 KPa	
	σ 392-784 E_{ed} 19223 KPa; σ 392-784 E_{ed} 27818 KPa	
ALTERNANZE DI LIMI CON SABBIE ARGILLOSI E SABBIE		
CON LIMI DEBOLMENTE ARGILLOSE (S1C2-S2C3)		
Angolo d'Attrito	$\phi = 37^{\circ}$	
Coesione	C = 0 kPa	
Peso di Volume naturale	$\gamma_{n} = 20.55 \text{ kN/m}^{3}$	
GHIAIE IN MATRICE SAE	BBIOSA GROSSOLANA	
Angolo d'Attrito	φ = 30.2°	
Coesione	C = 0 kPa	
Peso di Volume naturale	$\gamma_{n} = 16.8 \text{ kN/m}^{3}$	
ALTERNANZE DI LIMI CON SABBIE ARGILLOSI E ARGILLA		
DEBOLMENTE LIMOSA (S1C3)		
Angolo d'Attrito	φ = 29°	
Coesione	C = 2 kPa	
Peso di Volume naturale	$\gamma_{n} = 19.98 \text{ kN/m}^{3}$	

<u>Per il calcolo dei cedimenti si dovranno utilizzare i moduli edometrici ottenuti</u> <u>con le prove di laboratorio.</u>

Il lotto in studio è ubicato nella porzione centrale del Comune di Rieti, in un settore di territorio pianeggiante corrispondente all'alveo del Fiume Velino; la superficie topografica presenta una inclinazione media i < 15° rientrando, quindi, nella **categoria topografica T1** - *Superficie pianeggiante, pendii e rilievi isolati con inclinazione media i ≤ 15°.*

Le indagini geofisiche eseguite hanno permesso di identificare il valore delle Vseq che risultano pari a:

MASW1: Vseq = Vs30 = 240 m/s;

• MASW2: Vseq = Vs30 = 230 m/s;

• DOWN HOLE: Vseq = Vs30 = 201.5 m/s.

Le indagini eseguite in situ hanno consentito:

- la definizione delle caratteristiche morfologiche, strutturali, geolitologiche ed idrogeologiche dell'area interessata e di quelle circostanti;
- la determinazione delle caratteristiche tecniche dei terreni impegnati dalle strutture di fondazione;
- la caratterizzazione del sito in prospettiva sismica.

<u>I risultati ottenuti non evidenziano condizioni d'incompatibilità con la</u> <u>realizzazione di quanto in progetto considerando che</u>:

- <u>Sono assenti fenomeni franosi in atto o quiescenti</u>, elementi tali da predisporre la zona a condizioni di instabilità; a tal proposito l'area è stata considerata, nel progetto di piano stralcio per l'assetto idrogeologico predisposto dall' Autorità di Bacino del Tevere, tra <u>quelle a rischio dissesto nullo</u>.
- Dalla consultazione delle cartografie PAI dell'Autorità di bacino del Fiume Tevere, si è dedotto che l'area di studio ricade in una zona cartografata a pericolosità da alluvione <u>P3-elevata probabilità (alluvioni frequenti)</u> e in una zona cartografata a <u>rischio da alluvione R2-rischio medio</u>.
- <u>Il territorio in esame è esterno ad aree sottoposte a vincolo idrogeologico</u>.
- La zona è caratterizzata da una morfologia pianeggiante, corrispondente all'alveo del Fiume Velino; pertanto rientra nella <u>categoria topografica T1</u>.
- Per quanto concerne lo studio di Microzonazione Sismica di Livello 1 del Comune di Rieti il sito in esame ricade in corrispondenza della zona di attenzione per liquefazione Za lq 30202009. È stata indagata la potenzialità di liquefazione dei depositi e, non essendo le litologie presenti nel sito in esame completamente interne ai fusi granulometrici indicati nella norma e in considerazione della stratigrafia del sito, si ritiene che i terreni non siano suscettibili di liquefazione e quindi se ne omette la verifica.
- Per quanto riguarda l'approfondimento di Livello 3 di Microzonazione Sismica solamente il settore settentrionale di Ponte Cavallotti rientra nelle perimetrazioni oggetto di questo studio: si tratta di un'area che ricade in una zona di attenzione per instabilità per liquefazione e in una zona avente i seguenti fattori di amplificazione: FA = 1.3 (periodo 0.1-0.5 s); FA = 1.9 (periodo 0.4-0.8 s); FA = 2.3 (periodo 0.7-1.1).

• Per quanto concerne la modellazione sismica del sito è stata elaborata l'analisi di risposta sismica locale, sulla base delle prospezioni Down Hole, MASW e HVSR e ad essa si deve fare riferimento per la progettazione ed i calcoli strutturali.

Riguardo a questo ultimo punto, l'analisi di risposta sismica locale appositamente elaborata, sulla base dei dati acquisiti con le prove sismiche, permette di calcolare il valore della azione sismica propria del sito.

Tale valore e rappresentato dal parametro S prodotto tra Ss (categoria di sottosuolo) e St (categoria topografica): S = Ss* St.

Essendo la categoria topografica T1, il coefficiente topografico St è pari ad "1", pertanto S=Ss in cui "S" è il parametro desunto dalla che segue in cui sono sintetizzati i risultati ottenuti dall'analisi RSL per il calcolo del SLV.

Nel caso in esame per lo stato SLV calcolato con eccedenza del 10% in 50 anni, si che:

- **Considerando i parametri da normalizzazione totale** dello spettro RSL che sottende anche lo "spike" più gravoso:

ag=	0.212
S=	1.657
F0=	2.422
SeTmax=	0.851
Тв	0.190
Tc	0.540
TD	2.449

si ha un valore di ag pari a 0.212g e un valore del parametro S che tiene conto sia della categoria di sottosuolo che di quella topografica pari a 1.657. Pertanto, **ag*S è pari a**: 0.212*1.657 = 0.351g.

- **Considerando i parametri da normalizzazione parziale** dello spettro RSL che esclude il picco:

PARAMETRI SISMICI OTTENUTI		
IN BASE ALL'ORD. 55		
ag (g) 0.212		
amax (g)	0.347	
Sa max (g)	0.794	

T (Sa max)	0.279
Sa medio (g)	0.754
Sv max (m/s)	0.651
T (Sv max)	0.543
Sv medio (m/s)	0.662
Tb	0.187
Тс	0.562
Td	2.990
Fo	2.200
Ss	1.639

si ha un valore di ag (g) pari a 0.212 g e un valore del parametro S che tiene conto sia della categoria di sottosuolo che di quella topografica pari a 1.639. Pertanto, in questo

caso ag*S è pari a: 0.212*1.639 = 0.347.

I parametri e l'assetto stratigrafico del sito sono riassunti negli allegati del modello geologico del sottosuolo.

Rieti, 17/02/2022

geologo dott. Roberto Seri

Collaboratore: geologo Serena De Piccoli

16 BIBLIOGRAFIA E SITOGRAFIA

Alexander J. & Leeder M. - *Active tectonic control on alluvial architecture*. In: ETHRIDGE F. K., FLORES R.M. & HARVEY M.D. Eds. -Recent Developments in Fluvial Sedimentology. Spec. Publ. Soc. Ec. Pal. Min., 39, pp. 243-252, 1987.

Boccaletti M. & Guazzone G. - *Remnant arcs and marginal basins in the Cenozoic development of the Mediterranean*. Nature, 252, pp. 18-21, 1974.

Brunamonte F., Carrara C., Cavinato G. P., Ferreli L., Serva L., Michetti A. M., & Raglione M. - *La conca di Rieti.* Quaternario, 6(2), pp. 396-401, 1993.

Cavinato G. P., Chiaretti F., Cosentino D., Serva L. - *Caratteri geologico-strutturali del margine orientale della conca di Rieti.* Bollettino della Società Geologica Italiana, 108(2), pp. 207-218, 1989.

Capelli G., Mastrorillo L., Mazza R., Petitta M., Baldoni T., Cascone, D., ... & Teoli, P. -*Carta Idrogeologica del Territorio della Regione Lazio scala 1: 100.000 (4 fogli)*, Regione Lazio, S. EL. CA. Firenze, 2012.

Chiocchini M., Manfredini M., Manganelli V., Nappi G., Pannuzi L., Zattini N. - *Note illustrative della Carta Geologica d'Italia, alla scala 1: 100.000, Fogli 138-144, Terni-Palombara Sabina.* Arti Grafiche Panetto & Petrelli, Spoleto, 117, 1975.

Cipollari P., Cosentino D., Parotto M. - *Modello cinematico-strutturale dell'Italia centrale.* Studi Geologici Camerti, Volume Speciale 1995/2, 135-143, 1995.

Colombi et Alii, 2009: Allegato 1 – Relazione Tecnica Nuova Classificazione Sismica Del Territorio Della Regione Lazio, Delibera 387, 2009.

Elter P., Giglia G., Tongioni M. & Trevisan L.- *Tensional and compressional areas in the recent (Tortonian to present) evolution of the Northern Appenines.* Boll. Geof. Teor. Appl., 17, 3-18, 1975.

Ferreli L., Brunamonte F., Filippi G., Margheriti L., Michetti A. M. - *Riconoscimento di un livello lacustre della prima età del ferro nel bacino di Rieti e possibili implicazioni neotettoniche.* Studi Geologici Camerti, volume speciale (1992/1), 127-135.1992.

Martarelli L., Petitta M., Scalise A., & Silvi A. - *Cartografia idrogeologica sperimentale della Piana Reatina (Lazio).* Article in Italian]. Mem. Descr. Carta Geol. It, 81, 137-156, 2008.

Merla G. - *Geologia dell'Appennino Settentrionale.* Boll. Soc. Geol. It., 70, pp. 95-382, 1951.

Molin D., Stucchi M., Valensise G. - *Massime intensità macrosismiche osservate nei comuni italiani*. Documento elaborato per il dipartimento della Protezione Civile, 1996.

Scarascia Mugnozza G., Martino S., Salvatori L., Porchia A., Martinin G., Paciello A., Paolini S., Peloso A., Verrubbi, Hailemikael S. - *Relazione illustrativa della Microzonazione Sismica Livello 1 del Comune di Rieti.* 2013.

Sestini G. - *Postgeosynclinal deposition*. In G. Sestini (Ed.), Development of the Northern Apennines Geosyncline, Sedimentary Geology, 4, 481-520, 1970.

Rovida A., Locati M., Camassi R., Lolli, B., Gasperini P. - *Catalogo Parametrico dei Terremoti Italiani (CPTI15)*, versione 2.0. Istituto Nazionale di Geofisica e Vulcanologia (INGV). <u>https://doi.org/10.13127/CPTI/CPTI15.2</u>, 2019.

Trevisan L. - *Sul complesso sedimentario del Miocene superiore e del Pliocene della Val di Cecina e sui movimenti tettonici tardivi in rapporto ai giacimenti di lignite e del salgemma*. Boll. Soc. Geol. It., 70, pp. 65-78, 1952.

https://www.abtevere.it/ http://esse1-gis.mi.ingv.it/ https://www.provincia.rieti.it/SIT/

ALLEGATO 1

Corografia scala 1:25.000

Estratto cartografia IGM Foglio 138 II NE - CANTALICE Foglio 138 II SE - RIETI

Roberto Seri geologo consulenze geologiche

Via della Chimica snc-Rieti geologo.robertoseri@gmail.com

3290586415

ALLEGATO 2

Corografia scala 1:5.000

Estratto cartografia CTR

Fogli n°347152 -347153

Roberto Seri *geologo* consulenze geologiche 3290586415 Via della Chimica snc-Rieti geologo.robertoseri@gmail.com

ALLEGATO 3

Quadro geolitologico - Scala 1:2500

Alluvioni recenti ed attuali (Olocene)

Travertino (Olocene)

Conglomerati massivi, calcareniti e marne calcaree in facies fluviolacustre (Plio-Pleistocene)

Area di interesse

Roberto Seri geologo consulenze geologiche

3290586415

Via della Chimica snc-Rieti geologo.robertoseri@gmail.com

LEGENDA

Sondaggio geognostico a carotaggio continuo spinto fino a -30 m e attrezzato a Down Hole

Sondaggio geognostico a carotaggio continuo spinto fino a -15 m

Prova geofisica indiretta MASW (ubicazione della battuta)

Traccia delle sezioni geologiche

eti 3290586415 geologo.robertoseri@gmail.com

ALLEGATO 5

Indagini e prove eseguite secondo le disposizioni dell'Allegato C al Regolamento Regionale n. 26 del 26/10/2020 e ss.mm.ii.

Società di tecnologie e servizi innovativi nel settore ambientale

COMUNE DI RIETI

PONTE CAVALLOTTI

RAPPORTO STRATIGRAFIA SONDAGGIO SI-S2

DATA:]		C	OMMITTENTE:		
FEBBRAIO 20)22			C	OMUNE DI RIETI		
		GEO	3D SR				
Area	RAPPORTO DI PROVA	ESEGUITO	VERIFICATO RTE	Aggiornamento			
GEOTECNICA	AA 061-21	31/08/2021 02/09/2021	Settembre 2021 Febbraio 2022		Secultaria		
SOCIETA' CERTIFIC	ATA PER L'ESECUZ	IONE DI INC	AGINI DIAGNOSTICHE	STRUTTURALI E GE	OGNOSTICHE IN SITU		
GEO 3D SRL Via della Chimica, snc Loc. Vazia - 02100 Rieti tel./fax. 0746-221363 www.geo-3d.it EMAIL : admin@geo-3d.it Cod. Fisc. e P.I.:00937950574							

Comune di: <i>Rieti (RI)</i>	S1 Coordinate X Y: 42.402470°;12.871258°	Inizio/fine esecuzione: 31/08/2021
Rapporto prova del 14/02/2022	Allegato 2	Commessa N°: AA 061-21

UBICAZIONE INDAGINI

S1 Sondaggio geognostico a carotaggio continuo spinto fino a 30 m e attrezzato a Down Hole

SOCIETA' DI TECNOLOGIE E SERVIZI INNOVATIVI NEL SETTORE AMBIENTALE

GEO 3D S.r.l. Via della Chimica snc - 02100 Rieti tel/fax :0746/221363 - admin@geo-3d.it - www.geo-3d.it

Co Rie	mune ti		Indirizzo Ponte Cavallotti	Commit Comune	Committente Comune di Rieti		Certificato n. 1			Commessa AA 061-21			
So	ndaggio		Tipo Carotaggio	Tipo Sor	nda		Profondità F	Raggiunta		Quota	Ass. P.C	с.	
<u>Ini</u>	zio/Fine Esec	uzione	Operatore	Comacch Casse Ca	Into GEO405 So Into Coord Catalogatrici Coord 42.40 42.40		Coordinate 2	X Y		<u>393 m</u>	SIM		
	Litologia		Descrizione		Quota	Parametri	S.P.T.	Campioni	Perfora	zione	ne		
						8					llizzazio		
Scals [m]											Stab	Cata	Fald
		Suolo limoso	-sabbioso avana.		0.50								
		Sabbia limos	a debolmente argillosa e ghiai olivastro, sciolto	osa, di									
1		colore grigio											1.50
	• • • • • • •												Ξ
2													
	n norden de la care						← 1-1-1						
5	*****						3.00 PC						
1	10 100000 00 0 10 100000 00 0												
5												Cass.1	
	 A = A < (A = 1)A = (A = 1)A A = A < (A = 1)A = (A = 1)A 							← 5.50 →					
6		Alternanza	di sabhie e limi, debolmente ar	aillosi	6.00		_	S ← 6.00 →					
		di colore gri	gio olivastro.	ginosi									
7		Da -6.00 m consistenti.	a -7.50 m limi sabbiosi grigi po	000									
		Da -7.50 m	a -7.80 m sabbie grigie medio	-fini,									
8		Da -7.80 m	a -8.10 m è presente un trovan	te di									
		legno torbo Da -8.10 m a	so. a -9.00 m limi sabbiosi grigi po	CO				← 8.50 → S					
9		consistenti.	a . 0.00 m cabbia arigia madia	fini				← 9.00 →					
		sciolte.	a -9.90 m sabble grigle medio	-11111,	10.00								_
10		Da -9.90 m legno torbo	a -10.00 m è presente un trova so.	nte di	10.00		-					Cass.2	_
11		elementi calc	arei arrotondati, con diametro	da 0.5									
		a 3.0 cm.					13-17-21						
12							12.00 PC						
					13.00								
13	~ ~ ~ ~ ~ ~ ~	Limo con sat	bia argilloso di colore grigio	aroilla									
		grigia debolr	nente limosa, plastica e compa	atta.							(5) ()		
14											(RM)		
					15.00		_	 	(CS	5) +		Cass.3	-
									15.0)()			1
Can	npioni: S-Pareti So forazione: CS-Carc	ottili, O-Osterberg, N otiere Semplice CD-	/-Mazier, R-Rimaneggiato , Rs-Rimaneggia Carotiere Doppio, FC-Elica Continua	to da SPT							15.00		

Stabilizzazione: RM-Rivestimento Metallico, FB-Fanghi Betonitici

Prove SPT: PA-Punta Aperta, PC-Punta Chiusa

Carotaggio: Continuo

Sonda: Comacchio GEO405

SOCIETA' DI TECNOLOGIE E SERVIZI INNOVATIVI NEL SETTORE AMBIENTALE

GEO 3D S.r.l. Via della Chimica snc - 02100 Rieti tel/fax :0746/221363 - admin@geo-3d.it - www.geo-3d.it

Con Rie	nune ti		Indirizzo Ponte Cavallotti	Committ Comune	ente di Rieti	Certificato n. Commessa 1 AA 061-21			mmessa 061-21	iessa 1-21		
Sor	ndaggio		Tipo Carotaggio	Tipo Son	ipo Sonda Profondità Raggiunta			Que	ota Ass. P.	с.		
Ini	zio/Fine Esec	uzione	Operatore	Comacch Casse Ca	talogatrici	30 m 393 m 5 Coordinate X Y			5 11 3111			
	Litologia		Descrizione	6	Quota	Parametri	S.P.T.	Campioni	Perforazion	e u		
Scala [m]						geotecnici				Stabilizzazion	Cass. Catalog.	Falda
22 22 22 23 24 25 26 27 28		Limo con sab olivastro, mo grigia debolr Nell'ultimo tr sabbiosa a g	obia argilloso di colore grigio ille e poco plastico passante ad mente limosa, plastica e compo- ratto aumenta la componente ranulometria medio-fine, sciol	d argilla atta. te.				↓ 15.00 S ← 15.50 →			Cass.4	
29					30.00				(CS) 30.00	(RM)	Cass.6	
Cam	pioni: S-Pareti So	ttili, O-Osterberg. N	A-Mazier, R-Rimaneggiato , Rs-Rimaneggia	ato da SPT	1	<u> </u>				30.00	1	I
Perfe Stab Prov Carc Sono	prom. 3-rateti So prazione: CS-Carc ilizzazione: RM-R e SPT: PA-Punta <i>J</i> staggio: Continuo da: Comacchio GE	tiere Semplice, CD- vestimento Metallic Aperta, PC-Punta Ch	Carotiere Doppio, EC-Elica Continua co, FB-Fanghi Betonitici iiusa	200 00 JF I								

Comune di: Rieti (RI)	S1 Coordinate X Y: 42.402470°;12.871258°	Inizio/fine esecuzione: 31/08/2021
Rapporto prova del 14/02/2022	Allegato 2	Commessa N°: AA 061-21

Postazione Sondaggio S1

STANDARD PENETRATION TEST – AGI 1977							
MODALITA' PROVE							
Sondaggio			S1				
Data			31/08/2021				
Perforazione			Carotaggio continuo				
Diametro foro (mm)			127				
Livello falda			-				
Massa Aste (Kg/m)			10,0				
Massa del maglio (Kg	g)		63,5				
Altezza di caduta (m)		0,76					
S.P.T. Nº 1							
Profondità (m)		-3.00					
Campionatore		Spt in foro					
Punta		Chiusa					
	Va	lori					
N1= 1	N2=	: 1	N3= 1				
	S.P.T	. Nº 2					
Profondità (m)		-12.00					
Campionatore		Spt in foro					
Punta		Chiusa					
	Va	lori					
N1= 13	N2=	= 17 N3= 21					

Comune di: <i>Rieti (RI)</i>	S1 Coordinate X Y: 42.402470°;12.871258°	Inizio/fine esecuzione: 31/08/2021
Rapporto prova del 14/02/2022	Allegato 2	Commessa N°: AA 061-21

Cassetta 1 da 0.00 metri a 5.00 metri

Cassetta 2 da 5.00 metri a 10.00 metri

Comune di: <i>Rieti (RI)</i>	S1 Coordinate X Y: 42.402470°;12.871258°	Inizio/fine esecuzione: 31/08/2021
Rapporto prova del 14/02/2022	Allegato 2	Commessa N°: AA 061-21

Cassetta 3 da 10.00 metri a 15.00 metri

Cassetta 4 da 15.00 metri a 20.00 metri

Comune di: <i>Rieti (RI)</i>	S1 Coordinate X Y: 42.402470°;12.871258°	Inizio/fine esecuzione: 31/08/2021
Rapporto prova del 14/02/2022	Allegato 2	Commessa N°: AA 061-21

Cassetta 5 da 20.00 metri a 25.00 metri

Cassetta 6 da 25.00 metri a 30.00 metri

Comune di: <i>Rieti (RI)</i>	S2 Coordinate X Y: 42.402700°; 12.871716°	Inizio/fine esecuzione: 02/09/2021
Rapporto prova del 14/02/2022	Allegato 2	Commessa N°: AA 061-21

UBICAZIONE INDAGINI

S2 Sondaggio geognostico a carotaggio continuo spinto fino a 15 m

SOCIETA' DI TECNOLOGIE E SERVIZI INNOVATIVI NEL SETTORE AMBIENTALE

GEO 3D S.r.l. Via della Chimica snc - 02100 Rieti tel/fax :0746/221363 - admin@geo-3d.it - www.geo-3d.it

Co: Rie	mune ti		Indirizzo Ponte Cavallotti	Committente Comune di Rieti		Certificato n	•		Commessa AA 061-21				
So	ndaggio		Tipo Carotaggio	Tipo Sonda		Profondità F	aggiunta		Quota	a Ass. P.(с.		
S2 Ini	zio/Fine Esec	uzione	Continuo Operatore	Comacch Casse Ca	Comacchio GEO405 Casse Catalogatrici		15 m Coordinate 2	XY	396 m slm				
02/	/09/2021		Fortini-Occhietti	3	Quota	Paramatri	42.402700°;	12.871716°	Dorfor	aziono	1	1	1
	Litologia		Descrizione		Quota	geotecnici	5.r .1.	Campioni	renoi	azione	zazione		
Scala [m]											Stabiliz	Cass. Catalog	Falda
1 .		Terreno di rip inclusi calcar laterizi. Da -1 diventa mino laterizi di pic	porto in matrice limoso-argillos ei di pezzatura medio-grossa e I.50 m la pezzatura degli inclus ore ma resta diffusa la presenza cole dimensioni.	o con e i i di									
					3.00			2.00					3.00
3		Alternanza d variabile dal Da -3.00 m a colore grigio Da -4.00 m a	i sabbie, limi e argille di colore marrone-avana al grigio olivasi a -4.00 m limo con sabbia argill olivastro, molto consistente, p a -6.00 m limo avana compatto	tro. loso di lastico. con			5-6-8 3.50 PC	← 3.00 → S ← 3.50 →					-
5		Da -6.00 m a ghiaiosa con carboniosi. Da -7.00 m a	a -7.00 m argilla limosa debolm inclusi millimetrici calcarei e fru a -8.50 m sabbia avana fine.	aente ustoli								Cass.1	
7					8 50								
		Argilla sabbio	osa avana plastica e compatta.		0.30								
9		Da -12.00 m limo avana p	a -13.00 m è presente un orizz loco consistente.	onte di			€ 2-2-3 9.00 PC						
10												Cass.2	
11													
12													
13													
14					14.40						(RM)		
		Travertino			14.50		1		((5)	1		
			ia compatta, poco plastica.		13.00		-	-	15.	00	*	Cass.3	-
		Sabbia trave	ertinosa.										
Can Perf	npioni: S-Pareti Sc forazione: CS-Carc	ottili, O-Osterberg, N otiere Semplice, CD-	л-Mazier, R-Rimaneggiato , Rs-Rimaneggiat Carotiere Doppio, EC-Elica Continua	o da SPT							15.00		

Stabilizzazione: RM-Rivestimento Metallico, FB-Fanghi Betonitici Prove SPT: PA-Punta Aperta, PC-Punta Chiusa

Carotaggio: Continuo

Sonda: Comacchio GEO405

Comune di: <i>Rieti (RI)</i>	S2 Coordinate X Y: 42.402700°; 12.871716°	Inizio/fine esecuzione: 02/09/2021
Rapporto prova del 14/02/2022	Allegato 2	Commessa N°: AA 061-21

Postazione Sondaggio S2

STANDARD PENETRATION TEST – AGI 1977						
MODALITA' PROVE						
Sondaggio			S2			
Data			02/09/2021			
Perforazione			Carotaggio continuo			
Diametro foro (mm)			127			
Livello falda			-			
Massa Aste (Kg/m)			10,0			
Massa del maglio (Kg	g)		63,5			
Altezza di caduta (m)		0,76				
	S.P.T	. Nº 1				
Profondità (m)			-3.50			
Campionatore		Spt in foro				
Punta		Chiusa				
	Va	lori				
N1= 5	N2=	2= 6 N3= 8				
	S.P.T	. N° 2				
Profondità (m)		-9.00				
Campionatore		Spt in foro				
Punta		Chiusa				
	Va	lori	1			
N1= 2	N2=	2	N3= 3			

Comune di: <i>Rieti (RI)</i>	S2 Coordinate X Y: 42.402700°; 12.871716°	Inizio/fine esecuzione: 02/09/2021
Rapporto prova del 14/02/2022	Allegato 2	Commessa N°: AA 061-21

Cassetta 1 da 0.00 metri a 5.00 metri

Cassetta 2 da 5.00 metri a 10.00 metri

Comune di: <i>Rieti (RI)</i>	S2 Coordinate X Y: 42.402700°; 12.871716°	Inizio/fine esecuzione: 02/09/2021
Rapporto prova del 14/02/2022	Allegato 2	Commessa N°: AA 061-21

Cassetta 3 da 10.00 metri a 15.00 metri

PROVE PENETROMETRICHE DINAMICHE

Committente: Comune di Rieti Descrizione: Completamento pista ciclabile Localita': Ponte Cavallotti, Rieti

Codice commessa: AA 061-21 Numero certificati allegati: 2

Caratteristiche Tecniche-Strumentali Sonda: PROVE SPT IN FORO

Rif. Norme DIN	4094	
Peso Massa battente	63.5	Kg
Altezza di caduta libera	0.76	m
Peso sistema di battuta	4.2	Kg
Diametro punta conica	50.46	mm
Area di base punta	20	cm ²
Lunghezza delle aste	1	m
Peso aste a metro	7	Kg/m
Profondita' giunzione prima asta	0.80	m
Avanzamento punta	0.30	m
Numero colpi per punta	N(30)	
Coeff. Correlazione	1	
Rivestimento/fanghi	No	

Caratteristiche Tecniche-Strumentali Sonda: DEEP DRILL SP 200

Rif. Norme	DIN 4094	
Peso Massa battente	73 Kg	
Altezza di caduta libera	0.75 m	
Peso sistema di battuta	5 Kg	
Diametro punta conica	50.46 mm	
Area di base punta	20 cm ²	
Lunghezza delle aste	0.9 m	
Peso aste a metro	5.67 Kg/m	
Profondita' giunzione prim	a asta 0.50 m	
Avanzamento punta	0.30 m	
Numero colpi per punta	N(30)	
Coeff. Correlazione	1.178	
Rivestimento/fanghi	No	
Angolo di apertura punta	60 °	

PROVE PENETROMETRICHE DINAMICHE CONTINUE (DYNAMIC PROBING) DPSH – DPM (... scpt ecc.)

Note illustrative - Diverse tipologie di penetrometri dinamici

La prova penetrometrica dinamica consiste nell'infiggere nel terreno una punta conica (per tratti consecutivi δ) misurando il numero di colpi N necessari.

Le Prove Penetrometriche Dinamiche sono molto diffuse ed utilizzate nel territorio da geologi e geotecnici, data la loro semplicità esecutiva, economicità e rapidità di esecuzione.

La loro elaborazione, interpretazione e visualizzazione grafica consente di "catalogare e parametrizzare" il suolo attraversato con un'immagine in continuo, che permette anche di avere un raffronto sulle consistenze dei vari livelli attraversati e una correlazione diretta con sondaggi geognostici per la caratterizzazione stratigrafica.

La sonda penetrometrica permette inoltre di riconoscere abbastanza precisamente lo spessore delle coltri sul substrato, la quota di eventuali falde e superfici di rottura sui pendii, e la consistenza in generale del terreno.

L'utilizzo dei dati, ricavati da correlazioni indirette e facendo riferimento a vari autori, dovrà comunque essere trattato con le opportune cautele e, possibilmente, dopo esperienze geologiche acquisite in zona.

Elementi caratteristici del penetrometro dinamico sono i seguenti:

- peso massa battente M;
- altezza libera caduta H;
- punta conica: diametro base cono D, area base A (angolo di apertura α);
- avanzamento (penetrazione) δ ;
- presenza o meno del rivestimento esterno (fanghi bentonitici).

Con riferimento alla classificazione ISSMFE (1988) dei diversi tipi di penetrometri dinamici (vedi tabella sotto riportata) si rileva una prima suddivisione in quattro classi (in base al peso M della massa battente) :

- tipo LEGGERO (DPL);
- tipo MEDIO (DPM);
- tipo PESANTE (DPH);
- tipo SUPERPESANTE (DPSH).

Classificazione ISSMFE dei penetrometri dinamici:

Тіро	Sigla di riferimento	peso della massa M	prof. max indagine
		(<i>kg</i>)	battente
			<i>(m)</i>
Leggero	DPL (Light)	M ≤ 10	8
Medio	DPM (Medium)	10 < M < 40	20-25
Pesante	DPH (Heavy)	$40 \le M \le 60$	25
Super pesante	DPSH	M ≥ 60	25
(Super Heavy)			

penetrometri in uso in Italia

In Italia risultano attualmente in uso i seguenti tipi di penetrometri dinamici (non rientranti però nello

Standard ISSMFE):

- DINAMICO LEGGERO ITALIANO (DL-30) (MEDIO secondo la classifica ISSMFE)

massa battente M = 30 kg, altezza di caduta H = 0.20 m, avanzamento δ = 10 cm, punta conica (α =60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico : talora previsto;

- DINAMICO LEGGERO ITALIANO (DL-20) (MEDIO secondo la classifica ISSMFE) massa battente M = 20 kg, altezza di caduta H=0.20 m, avanzamento δ = 10 cm, punta

conica (α = 60-90°), diametro D 35.7 mm, area base cono A=10 cm² rivestimento / fango bentonitico

: talora previsto;

- DINAMICO PESANTE ITALIANO (SUPERPESANTE secondo la classifica ISSMFE) massa battente M = 73 kg, altezza di caduta H=0.75 m, avanzamento δ =30 cm, punta conica (α = 60°), diametro D = 50.8 mm, area base cono A=20.27 cm² rivestimento: previsto secondo precise indicazioni;

- DINAMICO SUPERPESANTE (Tipo EMILIA)

massa battente M=63.5 kg, altezza caduta H=0.75 m, avanzamento δ =20-30 cm, punta conica conica ($\alpha = 60^{\circ}-90^{\circ}$) diametro D = 50.5 mm, area base cono A = 20 cm², rivestimento / fango bentonitico : talora previsto.

Correlazione con Nspt

Poiché la prova penetrometrica standard (SPT) rappresenta, ad oggi, uno dei mezzi più diffusi ed economici per ricavare informazioni dal sottosuolo, la maggior parte delle correlazioni esistenti riguardano i valori del numero di colpi Nspt ottenuto con la suddetta prova, pertanto si presenta la necessità di rapportare il numero di colpi di una prova dinamica con Nspt. Il passaggio viene dato da:

$$NSPT = \beta_t \cdot N$$

Dove:

$$\beta_t = \frac{Q}{Q_{SPT}}$$

in cui Q è l'energia specifica per colpo e Qspt è quella riferita alla prova SPT.

L'energia specifica per colpo viene calcolata come segue:

$$Q = \frac{M^2 \cdot H}{A \cdot \delta \cdot (M + M')}$$

in cui

- M peso massa battente.
- M' peso aste.
- H altezza di caduta.
- A area base punta conica.
- δ passo di avanzamento.

Valutazione resistenza dinamica alla punta Rpd

Formula Olandesi

$$Rpd = \frac{M^2 \cdot H}{\left[A \cdot e \cdot (M+P)\right]} = \frac{M^2 \cdot H \cdot N}{\left[A \cdot \delta \cdot (M+P)\right]}$$

).

e infissione media per colpo (δ / N).

M peso massa battente (altezza caduta H).

P peso totale aste e sistema battuta.

Calcolo di (N 1)60

 $(N_1)_{60}$ è il numero di colpi normalizzato definito come segue:

$$(N_1)_{60} = \text{CN} \cdot \text{N60 con CN} = \sqrt{(\text{Pa}' \sigma_{\text{vo}})}$$
 CN < 1.7 Pa = 101.32 kPa (*Liao e Whitman 1986*)

 $N_{60} = N_{SPT} \cdot (\text{ER/60}) \cdot \text{C}_{\text{S}} \cdot \text{C}_{\text{r}} \cdot \text{C}_{\text{d}}$

ER/60 rendimento del sistema di infissione normalizzato al 60%.

- C_s parametro funzione della controcamicia (1.2 se assente).
- C_d funzione del diametro del foro (1 se compreso tra 65-115mm).

Cr parametro di correzione funzione della lunghezza delle aste.

Metodologia di Elaborazione.

Le elaborazioni sono state effettuate mediante un programma di calcolo automatico Dynamic Probing della *GeoStru Software*.

Il programma calcola il rapporto delle energie trasmesse (coefficiente di correlazione con SPT) tramite le elaborazioni proposte da Pasqualini (1983) - Meyerhof (1956) - Desai (1968) -Borowczyk-Frankowsky (1981).

Permette inoltre di utilizzare i dati ottenuti dall'effettuazione di prove penetrometriche per estrapolare utili informazioni geotecniche e geologiche.

Una vasta esperienza acquisita, unitamente ad una buona interpretazione e correlazione, permettono spesso di ottenere dati utili alla progettazione e frequentemente dati maggiormente attendibili di tanti dati bibliografici sulle litologie e di dati geotecnici determinati sulle verticali litologiche da poche

prove di laboratorio eseguite come rappresentazione generale di una verticale eterogenea disuniforme e/o complessa.

In particolare consente di ottenere informazioni su:

- l'andamento verticale e orizzontale degli intervalli stratigrafici,
- la caratterizzazione litologica delle unità stratigrafiche,
- i parametri geotecnici suggeriti da vari autori in funzione dei valori del numero dei colpi e delle resistenza alla punta.

Valutazioni statistiche e correlazioni

Elaborazione Statistica

Permette l'elaborazione statistica dei dati numerici di Dynamic Probing, utilizzando nel calcolo dei valori rappresentativi dello strato considerato un valore inferiore o maggiore della media aritmetica dello strato (dato comunque maggiormente utilizzato); i valori possibili in immissione sono :

Media

Media aritmetica dei valori del numero di colpi sullo strato considerato.

Media minima

Valore statistico inferiore alla media aritmetica dei valori del numero di colpi sullo strato considerato.

Massimo

Valore massimo dei valori del numero di colpi sullo strato considerato.

Minimo

Valore minimo dei valori del numero di colpi sullo strato considerato.

Scarto quadratico medio

Valore statistico di scarto dei valori del numero di colpi sullo strato considerato.

Media deviata

Valore statistico di media deviata dei valori del numero di colpi sullo strato considerato.

Media (+ s)

Media + scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Media (– s)

Media - scarto (valore statistico) dei valori del numero di colpi sullo strato considerato.

Distribuzione normale R.C.

Il valore di $N_{spt,k}$ viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una probabilità di non superamento del 5%, secondo la seguente relazione:

$$Nspt_{,k} = Nspt_{,medio} - 1.645 \cdot (\sigma_{Nspt})$$

dove σ_{Nspt} è la deviazione standard di Nspt

Distribuzione normale R.N.C.

Il valore di Nspt,k viene calcolato sulla base di una distribuzione normale o gaussiana, fissata una

probabilità di non superamento del 5%, trattando i valori medi di Nspt distribuiti normalmente:

$$Nspt$$
, $_{k} = Nspt$, $_{medio} -1.645 \cdot (\sigma_{Nspt}) / \sqrt{n}$

dove n è il numero di letture.

ressione ammissibile

Pressione ammissibile specifica sull'interstrato (con effetto di riduzione energia per svergolamento aste o no) calcolata secondo le note elaborazioni proposte da Herminier, applicando un coefficiente di sicurezza (generalmente = 20-22) che corrisponde ad un coefficiente di sicurezza standard delle fondazioni pari a 4, con una geometria fondale standard di larghezza pari a 1 m ed immorsamento d = 1 m.

Correlazioni geotecniche terreni incoerenti

Liquefazione

Permette di calcolare utilizzando dati Nspt il potenziale di liquefazione dei suoli (prevalentemente sabbiosi).

Attraverso la relazione di *SHI-MING (1982)*, applicabile a terreni sabbiosi, la liquefazione risulta possibile solamente se Nspt dello strato considerato risulta inferiore a Nspt critico calcolato con l'elaborazione di *SHI-MING*.

Correzione Nspt in presenza di falda

 $Nspt corretto = 15 + 0.5 \cdot (Nspt - 15)$

Nspt è il valore medio nello strato

La correzione viene applicata in presenza di falda solo se il numero di colpi è maggiore di 15 (la correzione viene eseguita se tutto lo strato è in falda).

Angolo di Attrito

- Peck-Hanson-Thornburn-Meyerhof (1956) Correlazione valida per terreni non molli a prof. < 5 m; correlazione valida per sabbie e ghiaie rappresenta valori medi. Correlazione storica molto usata, valevole per prof. < 5 m per terreni sopra falda e < 8 m per terreni in falda (tensioni < 8-10 t/mq)
- Meyerhof (1956) Correlazioni valide per terreni argillosi ed argillosi-marnosi fessurati, terreni di riporto sciolti e coltri detritiche (da modifica sperimentale di dati).
- Sowers (1961)- Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. <
 4 m. sopra falda e < 7 m per terreni in falda) σ >5 t/mq.
- De Mello Correlazione valida per terreni prevalentemente sabbiosi e sabbioso-ghiaiosi (da modifica sperimentale di dati) con angolo di attrito < 38°.
- Malcev (1964) Angolo di attrito in gradi valido per sabbie in genere (cond. ottimali per prof. > 2 m e per valori di angolo di attrito < 38°).

- Schmertmann (1977)- Angolo di attrito (gradi) per vari tipi litologici (valori massimi). N.B. valori spesso troppo ottimistici poiché desunti da correlazioni indirette da Dr %.
- Shioi-Fukuni (1982) ROAD BRIDGE SPECIFICATION, Angolo di attrito in gradi valido per sabbie sabbie fini o limose e limi siltosi (cond. ottimali per prof. di prova > 8 m sopra falda e > 15 m per terreni in falda) σ >15 t/mq.
- Shioi-Fukuni (1982) JAPANESE NATIONALE RAILWAY, Angolo di attrito valido per sabbie medie e grossolane fino a ghiaiose.
- Angolo di attrito in gradi (Owasaki & Iwasaki) valido per sabbie sabbie medie e grossolane-ghiaiose (cond. ottimali per prof. > 8 m sopra falda e > 15 m per terreni in falda) s>15 t/mq.
- Meyerhof (1965) Correlazione valida per terreni per sabbie con % di limo < 5% a profondità < 5 m e con (%) di limo > 5% a profondità < 3 m.
- Mitchell e Katti (1965) Correlazione valida per sabbie e ghiaie.

Densità relativa (%)

- Gibbs & Holtz (1957) correlazione valida per qualunque pressione efficace, per ghiaie Dr viene sovrastimato, per limi sottostimato.
- Skempton (1986) elaborazione valida per limi e sabbie e sabbie da fini a grossolane NC a qualunque pressione efficace, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.
- Meyerhof (1957).
- Schultze & Menzenbach (1961) per sabbie fini e ghiaiose NC, metodo valido per qualunque valore di pressione efficace in depositi NC, per ghiaie il valore di Dr % viene sovrastimato, per limi sottostimato.

Modulo Di Young (E_y)

- Terzaghi elaborazione valida per sabbia pulita e sabbia con ghiaia senza considerare la pressione efficace.
- Schmertmann (1978), correlazione valida per vari tipi litologici .
- Schultze-Menzenbach , correlazione valida per vari tipi litologici.
- D'Appollonia ed altri (1970), correlazione valida per sabbia, sabbia SC, sabbia NC e ghiaia.
- Bowles (1982), correlazione valida per sabbia argillosa, sabbia limosa, limo sabbioso, sabbia media, sabbia e ghiaia.

Modulo Edometrico

- Begemann (1974) elaborazione desunta da esperienze in Grecia, correlazione valida per limo con sabbia, sabbia e ghiaia
- Buismann-Sanglerat, correlazione valida per sabbia e sabbia argillosa.
- Farrent (1963) valida per sabbie, talora anche per sabbie con ghiaia (da modifica sperimentale di dati).
- Menzenbach e Malcev valida per sabbia fine, sabbia ghiaiosa e sabbia e ghiaia.

Stato di consistenza

• Classificazione A.G.I. 1977

Peso di Volume

• Meyerhof ed altri, valida per sabbie, ghiaie, limo, limo sabbioso.

Peso di volume saturo

• Terzaghi-Peck (1948-1967)

Modulo di poisson

• Classificazione A.G.I.

Potenziale di liquefazione (Stress Ratio)

• Seed-Idriss (1978-1981) . Tale correlazione è valida solamente per sabbie, ghiaie e limi sabbiosi, rappresenta il rapporto tra lo sforzo dinamico medio τ e la tensione verticale di consolidazione per la valutazione del potenziale di liquefazione delle sabbie e terreni sabbio-ghiaiosi attraverso grafici degli autori.

Velocità onde di taglio Vs (m/s)

• Tale correlazione è valida solamente per terreni incoerenti sabbiosi e ghiaiosi.

Modulo di deformazione di taglio (G)

- Ohsaki & Iwasaki elaborazione valida per sabbie con fine plastico e sabbie pulite.
- Robertson e Campanella (1983) e Imai & Tonouchi (1982) elaborazione valida soprattutto per sabbie e per tensioni litostatiche comprese tra 0,5 4,0 kg/cmq.

Modulo di reazione (Ko)

• Navfac (1971-1982) - elaborazione valida per sabbie, ghiaie, limo, limo sabbioso.

Resistenza alla punta del Penetrometro Statico (Qc)

• Robertson (1983) - Qc

Correlazioni geotecniche terreni coesivi

Coesione non drenata

- Benassi & Vannelli- correlazioni scaturite da esperienze ditta costruttrice Penetrometri SUNDA (1983).
- Terzaghi-Peck (1948-1967), correlazione valida per argille sabbiose-siltose NC con Nspt < 8 , argille limose-siltose mediamente plastiche, argille marnose alterate-fessurate.
- Terzaghi-Peck (1948). *Cu* (min-max).
- Sanglerat, da dati Penetr. Statico per terreni coesivi saturi, tale correlazione non è valida per argille sensitive con sensitività > 5, per argille sovraconsolidate fessurate e per i limi a bassa plasticità.
- Sanglerat , (per argille limose-sabbiose poco coerenti), valori validi per resistenze penetrometriche

< 10 colpi, per resistenze penetrometriche > 10 l'elaborazione valida è comunque quella delle "argille plastiche " di Sanglerat.

- (U.S.D.M.S.M.) U.S. Design Manual Soil Mechanics Coesione non drenata per argille limose e argille di bassa media ed alta plasticità , (Cu-Nspt-grado di plasticità).
- Schmertmann (1975), Cu (Kg/cmq) (valori medi), valida per **argille** e **limi argillosi** con Nc = 20 e Qc/Nspt = 2.
- Schmertmann (1975), Cu (Kg/cmq) (valori minimi), valida per argille NC.
- Fletcher (1965), (Argilla di Chicago) . Coesione non drenata Cu (Kg/cmq), colonna valori validi per argille a medio-bassa plasticità.
- Houston (1960) argilla di media-alta plasticità.
- Shioi-Fukuni (1982), valida per suoli poco coerenti e plastici, argilla di media-alta plasticità.
- Begemann.
- De Beer.

Resistenza alla punta del Penetrometro Statico (Qc)

• Robertson (1983) - Qc

Modulo Edometrico-Confinato (Mo)

- Stroud e Butler (1975),- per litotipi a media plasticità, valida per litotipi argillosi a media-medio-alta plasticità da esperienze su argille glaciali.
- Stroud e Butler (1975), per litotipi a medio-bassa plasticità (IP < 20), valida per litotipi argillosi a medio-bassa plasticità (IP < 20) - da esperienze su argille glaciali.
- Vesic (1970), correlazione valida per argille molli (valori minimi e massimi).

- Trofimenkov (1974), Mitchell e Gardner Modulo Confinato -Mo (Eed) (Kg/cmq)-, valida per litotipi argillosi e limosi-argillosi (rapporto Qc/Nspt=1.5-2.0).
- Buismann- Sanglerat, valida per argille compatte (Nspt < 30) medie e molli (Nspt < 4) e argille sabbiose (Nspt = 6-12).

Modulo Di Young (Ey)

- Schultze-Menzenbach (Min. e Max.), correlazione valida per limi coerenti e limi argillosi con I.P. > 15.
- D'Appollonia ed altri (1983), correlazione valida per argille sature-argille fessurate.

Stato di consistenza

• Classificazione A.G.I. 1977.

Peso di Volume

• Meyerhof ed altri, valida per argille, argille sabbiose e limose prevalentemente coerenti.

Peso di volume saturo

• Meyerhof ed altri.

PROVA ... S1

Strumento utilizzato...PROVE SPT IN FORO Prova eseguita in data 31/08/2021 Falda rilevata

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi
3.15	1
3.30	1
3.45	1
12.15	13
12.30	17
12.45	21

STIMA PARAMETRI GEOTECNICI PROVA Nr.1

TERRENI COESIVI

Coesione non drenata (KPa)

	NSPT	Prof.	Terza	Sangl	Terza	U.S.D	Schm	SUN	Fletch	Houst	Shioi	Bege	De
		Strato	ghi-Pe	erat	ghi-Pe	.M.S.	ertma	DA	er	on	-	mann	Beer
		(m)	ck		ck	Μ	nn	(1983	(1965	(1960	Fukui		
					(1948		1975)))	1982		
)			Benas	Argill				
								si e	a di				
								Vanne	Chica				
								lli	go				
[1] -	2	3.45	12.26	24.52	0.00	8.04	18.93	0.00	17.95	57.37	9.81	0.00	24.52
[2] -	38	12.45	251.5	465.8	0.00	136.0	371.5	0.00	291.2	390.9	186.3	455.3	465.8
			4	2		2	7		6	9	3	2	2

Qc (Resistenza punta Penetrometro Statico)

	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Mpa)
[1] -	2	3.45	Robertson (1983)	0.39
[2] -	38	12.45	Robertson (1983)	7.45

Modulo Edometrico (Mpa)

	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-San
		(m)	Butler (1975)		(1974),	glerat
					Mitchell e	
					Gardner	
[1] -	2	3.45	0.90	2.94	2.18	2.45
[2] -	38	12.45	17.10		38.18	37.27

Modulo di Young (Mpa)

	NSPT	Prof. Strato (m)	Schultze	Apollonia
[1] -	2	3.45	0.25	1.96
[2] -	38	12.45	40.85	37.27

Classificazione AGI

	NSPT	Prof. Strato (m)	Correlazione	Classificazione
[1] -	2	3.45	A.G.I. (1977)	PRIVO DI
L-J				CONSISTENZA
[2] -	38	12.45	A.G.I. (1977)	ESTREM.
				CONSISTENTE

Peso unita' di volume

	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume
				(KN/m^3)
[1] -	2	3.45	Meyerhof	15.30
[2] -	38	12.45	Meyerhof	23.63

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (KN/m ³)
[1] -	2	3.45	Meyerhof	18.14
[2] -	38	12.45	Meyerhof	24.52

Velocita' onde di taglio

	NSPT	Prof. Strato (m)	Correlazione	Velocita' onde di taglio (m/s)
[1] -	2	3.45		0
[2] -	38	12.45		0

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato (m)	Gibbs & Holtz 1957	Meyerhof 1957	Schultze & Menzenbach (1961)	Skempton 1986
[1] -	2	3.45	8.44	32.19	39.11	12.38
[2] -	38	12.45	43.37	79.42	78.98	59.73

Angolo di resistenza al taglio

	NSPT	Prof.	Nspt	Peck-	Meye	Sowe	Malc	Meye	Schm	Mitch	Shioi-	Japan	De	Owas
		Strato	corret	Hans	rhof	rs	ev	rhof	ertma	ell &	Fuku	ese	Mello	aki &
		(m)	to per	on-Th	(1956	(1961	(1964	(1965	nn	Katti	ni	Natio		Iwasa
			prese	ornbu))))	(1977	(1981	1982	nal		ki
			nza	rn-M))	(ROA	Railw		
			falda	eyerh					Sabbi		D	ay		
				of					e		BRID			
				1956							GE			
											SPEC			
											IFIC			
											ATIO			
											N)			
[1] -	2	3.45	2	27.57	20.57	28.56	30.23	30.37	0	<30	20.48	27.6	21.05	21.32
[2] -	38	12.45	26.5	34.57	27.57	35.42	30	38.85	39.12	32-35	34.94	34.95	27.04	38.02

Modulo di Young (Mpa)

	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles
		Strato	corretto		ann	Menzenba	nia ed altri	(1982)
		(m)	per		(1978)	ch (Sabbia	1970	Sabbia
			presenza		(Sabbie)	ghiaiosa)	(Sabbia)	Media
			falda					
[1] -	2	3.45	2		1.57			
[2] -	38	12.45	26.5	36.03	20.79	30.73	37.14	20.35

Modulo Edometrico (Mpa)

	NSPT	Prof. Strato	Nspt	Buisman-S	Begemann	Farrent	Menzenbac
		(m)	corretto per	anglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)
[1] -	2	3.45	2		3.10	1.39	4.60
[2] -	38	12.45	26.5	15.59	8.03	18.45	15.32

Classificazione AGI

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Classificazione
		(m)	per presenza		AGI
			falda		
[1] -	2	3.45	2	Classificazione	SCIOLTO
				A.G.I	
[2] -	38	12.45	26.5	Classificazione	ADDENSATO
				A.G.I	

Peso unita' di volume

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(KN/m ³)
[1] -	2	3.45	2	Terzaghi-Peck	13.45

				1948	
[2] -	38	12.45	26.5	Terzaghi-Peck	16.32
				1948	

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Peso Unita' Volume Saturo (KN/m ³)
[1] -	2	3.45	2	Terzaghi-Peck	18.18
[2] -	38	12.45	26.5	Terzaghi-Peck	19.96
L-J			2000	1948	

Modulo di Poisson

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
[1] -	2	3.45	2	(A.G.I.)	0.35
[2] -	38	12.45	26.5	(A.G.I.)	0.3

Modulo di deformazione a taglio dinamico (Mpa)

	NSPT	Prof. Strato	Nspt corretto	Ohsaki (Sabbie	Robertson e
		(m)	per presenza	pulite)	Campanella
			falda		(1983) e Imai &
					Tonouchi
					(1982)
[1] -	2	3.45	2	12.23	18.72
[2] -	38	12.45	26.5	138.77	90.79

Velocita' onde di taglio

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Velocita' onde
		(m)	per presenza		di taglio
			falda		(m/s)
[1] -	2	3.45	2	Ohta & Goto	85.68
				(1978) Limi	
[2] -	38	12.45	26.5	Ohta & Goto	179.93
				(1978) Limi	

Liquefazione

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Fs
		(m)	per presenza		Liquefazione
			falda		
[1] -	2	3.45	2	Seed e Idriss	
				(1971)	
[2] -	38	12.45	26.5	Seed e Idriss	
				(1971)	

Coefficiente spinta a Riposo

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	KO
[1]	- 2	3.45	2		
[2]	- 38	12.45	26.5		

Qc (Resistenza punta Penetrometro Statico)

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Qc (Mpa)
[1] -	2	3.45	2		
[2] -	38	12.45	26.5		

PROVA ... S2

Strumento utilizzato...PROVE SPT IN FORO Prova eseguita in data 02/09/2021 Falda rilevata

Tipo elaborazione Nr. Colpi: Medio

Profondita' (m)	Nr. Colpi
3.65	5
3.80	6
3.95	8
9.15	2
9.30	2
9.45	3

STIMA PARAMETRI GEOTECNICI PROVA Nr.2

TERRENI COESIVI

Coesione non drenata (KPa)

	NSPT	Prof.	Terza	Sangl	Terza	U.S.D	Schm	SUN	Fletch	Houst	Shioi	Bege	De
		Strato	ghi-Pe	erat	ghi-Pe	.M.S.	ertma	DA	er	on	-	mann	Beer
		(m)	ck		ck	Μ	nn	(1983	(1965	(1960	Fukui		
					(1948		1975)))	1982		
)			Benas	Argill				
								si e	a di				
								Vanne	Chica				
								lli	go				
[1] -	14	3.95	92.67	171.6	0.00	54.23	135.3	0.00	119.5	150.7	68.65	188.4	171.6
				2			3		4	3		8	2
[2] -	5	9.45	30.60	61.29	0.00	19.91	47.76	0.00	44.33	79.04	24.52	0.00	61.29

Qc (Resistenza punta Penetrometro Statico)

	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Mpa)
[1] -	14	3.95	Robertson (1983)	2.75
[2] -	5	9.45	Robertson (1983)	0.98

Modulo Edometrico (Mpa)

	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-San
		(m)	Butler (1975)		(1974),	glerat
					Mitchell e	
					Gardner	
[1] -	14	3.95	6.30		14.18	13.73
[2] -	5	9.45	2.25	7.35	5.18	6.13

Modulo di Young (Mpa)

	NSPT	Prof. Strato (m)	Schultze	Apollonia
[1] -	14	3.95	13.79	13.73
[2] -	5	9.45	3.64	4.90

Classificazione AGI

	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
[1] -	14	3.95	A.G.I. (1977)	CONSISTENTE
[2] -	5	9.45	A.G.I. (1977)	MODERAT.
				CONSISTENTE

Peso unita' di volume

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume (KN/m ³)
[1] -	14	3.95	Meyerhof	20.10
[2] -	5	9.45	Meyerhof	17.26

Peso unita' di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume saturo
				(KN/m^3)
[1] -	14	3.95	Meyerhof	22.06
[2] -	5	9.45	Meyerhof	18.44

Velocita' onde di taglio

	NSPT	Prof. Strato (m)	Correlazione	Velocita' onde di taglio (m/s)	
[1] -	14	3.95		0	
[2] -	5	9.45		0	

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato	Gibbs &	Meyerhof	Schultze &	Skempton
		(m)	Holtz 1957	1957	Menzenbach	1986
					(1961)	
[1] -	14	3.95	42.36	79.01	83.66	41.17
[2] -	5	9.45	13.87	37.32	38.16	20.83

Angolo di resistenza al taglio

	NSPT	Prof.	Nspt	Peck-	Meye	Sowe	Malc	Meye	Schm	Mitch	Shioi-	Japan	De	Owas
		Strato	corret	Hans	rhof	rs	ev	rhof	ertma	ell &	Fuku	ese	Mello	aki &
		(m)	to per	on-Th	(1956	(1961	(1964	(1965	nn	Katti	ni	Natio		Iwasa
			prese	ornbu))))	(1977	(1981	1982	nal		ki
			nza	rn-M))	(ROA	Railw		
			falda	eyerh					Sabbi		D	ay		
				of					e		BRID			
				1956							GE			
											SPEC			
											IFIC			
											ATIO			
											N)			
[1] -	14	3.95	14	31	24	31.92	31.97	35.13	39.06	30-32	29.49	31.2	27.91	31.73
[2] -	5	9.45	5	28.43	21.43	29.4	27.88	31.67	0	<30	23.66	28.5	21.75	25

Modulo di Young (Mpa)

	NSPT	Prof.	Nspt	Terzaghi	Schmertm	Schultze-	D'Appollo	Bowles
		Strato	corretto		ann	Menzenba	nia ed altri	(1982)
		(m)	per		(1978)	ch (Sabbia	1970	Sabbia
			presenza		(Sabbie)	ghiaiosa)	(Sabbia)	Media
			falda					
[1] -	14	3.95	14	26.19	10.98	16.27	27.95	14.22
[2] -	5	9.45	5		3.92			

Modulo Edometrico (Mpa)

	NSPT	Prof. Strato	Nspt	Buisman-S	Begemann	Farrent	Menzenbac
		(m)	corretto per	anglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)
[1] -	14	3.95	14	8.24	5.51	9.75	9.85
[2] -	5	9.45	5		3.70	3.48	5.91

Classificazione AGI

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Classificazione
		(m)	per presenza		AGI
			falda		
[1] -	14	3.95	14	Classificazione	MODERATAM
				A.G.I	ENTE
					ADDENSATO
[2] -	5	9.45	5	Classificazione	POCO
				A.G.I	ADDENSATO

Peso unita' di volume

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(KN/m ³)
[1] -	14	3.95	14	Terzaghi-Peck	14.97
				1948	
[2] -	5	9.45	5	Terzaghi-Peck	13.85
				1948	

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'
		(m)	per presenza		Volume Saturo
			falda		(KN/m ³)
[1] -	14	3.95	14	Terzaghi-Peck	19.13
				1948	
[2] -	5	9.45	5	Terzaghi-Peck	18.43
				1948	

Modulo di Poisson

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
[1] -	14	3.95	14	(A.G.I.)	0.33
[2] -	5	9.45	5	(A.G.I.)	0.34

Modulo di deformazione a taglio dinamico (Mpa)

	NSPT	Prof. Strato	Nspt corretto	Ohsaki (Sabbie	Robertson e
		(m)	per presenza	pulite)	Campanella
			falda		(1983) e Imai &
					Tonouchi
					(1982)
[1] -	14	3.95	14	76.17	61.48
[2] -	5	9.45	5	28.94	32.77

Velocita' onde di taglio

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Velocita' onde
		(m)	per presenza		di taglio
			falda		(m/s)
[1] -	14	3.95	14	Ohta & Goto	123.15
				(1978) Limi	
[2] -	5	9.45	5	Ohta & Goto	130.46
				(1978) Limi	

Liquefazione

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Fs
		(m)	per presenza		Liquefazione
			falda		
[1] -	14	3.95	14	Seed e Idriss	
				(1971)	
[2] -	5	9.45	5	Seed e Idriss	
				(1971)	

Coefficiente spinta a Riposo

	N	ISPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	K0
[1]	-	14	3.95	14		
[2]	-	5	9.45	5		

Qc (Resistenza punta Penetrometro Statico)

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Qc (Mpa)
[1] -	14	3.95	14		
[2] -	5	9.45	5		

PROVA ... DPSH1

Strumento utilizzato...DEEP DRILL SP200Prova eseguita in data07-09-2021Profondita' prova13.80 mtFalda rilevata13.80 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)	_	coeff.	dinamica	dinamica	ammissibile	ammissibile
		riduzione	ridotta	(Mpa)	con riduzione	Herminier -
		sonda Chi	(Mpa)		Herminier -	Olandesi
					Olandesi	(KPa)
					(KPa)	
0.30	20	0.803	12.53	15.61	626.69	780.74
0.60	16	0.797	9.32	11.70	466.21	584.95
0.90	8	0.842	4.92	5.85	246.13	292.48
1.20	4	0.836	2.45	2.92	122.29	146.24
1.50	2	0.831	1.14	1.38	57.15	68.76
1.80	2	0.826	1.14	1.38	56.81	68.76
2.10	5	0.822	2.82	3.44	141.23	171.89
2.40	1	0.817	0.53	0.65	26.51	32.44
2.70	1	0.813	0.53	0.65	26.37	32.44
3.00	1	0.809	0.52	0.65	26.23	32.44
3.30	1	0.805	0.49	0.61	24.71	30.71
3.60	7	0.801	3.44	4.30	172.18	214.98
3.90	9	0.797	4.41	5.53	220.36	276.41
4.20	11	0.794	5.09	6.41	254.56	320.73
4.50	12	0.790	5.53	7.00	276.53	349.89
4.80	14	0.737	6.02	8.16	300.89	408.21
5.10	16	0.734	6.52	8.88	325.93	444.04
5.40	12	0.781	5.20	6.66	260.11	333.03
5.70	11	0.778	4.75	6.11	237.57	305.28
6.00	16	0.725	6.15	8.47	307.34	423.64
6.30	11	0.773	4.50	5.82	225.10	291.25
6.60	14	0.720	5.34	7.41	267.02	370.68
6.90	14	0.718	5.09	7.09	254.44	354.39
7.20	12	0.766	4.65	6.08	232.58	303.76
7.50	13	0.713	4.70	6.58	234.77	329.08
7.80	23	0.661	7.38	11.15	368.81	557.71
8.10	20	0.709	6.88	9.70	343.95	484.96
8.40	18	0.707	6.17	8.73	308.69	436.47
8.70	26	0.655	7.93	12.10	396.47	604.99
9.00	18	0.703	5.89	8.38	294.65	418.84
9.30	23	0.652	6.98	10.70	348.77	535.18
9.60	25	0.650	7.27	11.18	363.41	559.13
9.90	30	0.648	8.70	13.42	434.95	670.96
10.20	13	0.697	4.05	5.81	202.54	290.75
-------	----	-------	------	-------	--------	--------
10.50	19	0.695	5.69	8.18	284.29	409.06
10.80	21	0.643	5.82	9.04	290.89	452.12
11.10	23	0.642	6.36	9.90	317.81	495.18
11.40	25	0.640	6.64	10.38	332.20	518.84
11.70	25	0.639	6.63	10.38	331.41	518.84
12.00	22	0.637	5.82	9.13	290.94	456.58
12.30	19	0.686	5.22	7.61	260.98	380.61
12.60	23	0.634	5.84	9.21	292.18	460.74
12.90	24	0.633	6.08	9.62	304.14	480.77
13.20	26	0.631	6.35	10.07	317.63	503.33
13.50	23	0.629	5.61	8.91	280.28	445.25
13.80	23	0.628	5.59	8.91	279.57	445.25

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Mpa)		Fraction	unita' di	unita' di	e	di		one
(m)				(%)	volume	volume	efficace	correlaz		
					(KN/m^3)	saturo	(KPa)	. con		
						(KN/m^3)		Nspt		
0.6	18	12.07	Incoere	0	20.5	22.56	6.15	1	18	riporto/t
			nte -							erreno
			coesivo							vegetale
3.9	3.73	2.08	Incoere	0	16.48	18.34	39.49	1	3.73	sabbia
			nte -							limosa
			coesivo							deb.
										argillosa
										e
										ghiaiosa
7.5	13	5.77	Incoere	0	20.01	21.97	93.29	1	13	limo e
			nte -							sabbia
			coesivo							deb.
										argillosi
13.8	22.33	7.61	Incoere	0	20.69	21.08	150.69	1	22.33	limo e
			nte -							argilla
			coesivo							sabbiosi

STIMA PARAMETRI GEOTECNICI PROVA Nr.3

TERRENI COESIVI

Coesione non drenata (KPa)

	NSPT	Prof. Strato	Terza	Sangl	Terza	U.S.D	Schm	SUN DA	Fletch	Houst	Shioi	Bege	De Beer
		(m)		Crat		.wi.s. M	nn	(1083	(1065	(1060	- Fukui	mann	Deer
		(111)	UK		(1948	111	1075	(1905	(1905	(1900	1087		
							1775) Benas) Argill)	1702		
)			sie	a di				
								Vanne	Chica				
								lli	go				
[1] -	18	0.60	119.1	220.6	0.00	68.84	174.4	362.0	151.0	185.8	88.26	306.4	220.6
riport			5	5			6	6	2	4		6	5
o/terre													
no													
vegeta													
le													
[2] -	3.73	3.90	22.85	45.70	0.00	14.91	35.50	62.37	33.24	69.73	18.24	19.42	45.70
sabbia													
limos													
a deb.													
argillo													
sa e													
ghiaio													
sa													
[3] -	13	7.50	86.00	159.3	0.00	50.50	125.5	173.0	111.4	142.2	63.74	120.4	159.3
limo e				6			3	9	0	9		3	6
sabbia													
deb.													
argillo													
si													
[4] -	22.33	13.80	147.7	273.7	0.00	84.24	217.0	228.3	183.8	226.0	109.5	187.1	273.7
limo e			9	0			2	0	7	4	4	1	0
argilla													
sabbio													
si													

Qc (Resistenza punta Penetrometro Statico)

	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Mpa)
[1] - riporto/terreno	18	0.60	Robertson (1983)	3.53
vegetale				
[2] - sabbia	3.73	3.90	Robertson (1983)	0.73
limosa deb.				
argillosa e ghiaiosa				
[3] - limo e sabbia	13	7.50	Robertson (1983)	2.55
deb. argillosi				

[4] - limo e argilla	22.33	13.80	Robertson (1983)	4.38
sabbiosi				

Modulo Edometrico (Mpa)

	NSPT	Prof. Strato (m)	Stroud e Butler (1975)	Vesic (1970)	Trofimenkov (1974), Mitchell e Gardner	Buisman-San glerat
[1] - riporto/terren o vegetale	18	0.60	8.10		18.18	17.65
[2] - sabbia limosa deb. argillosa e ghiaiosa	3.73	3.90	1.68	5.49	3.91	4.57
[3] - limo e sabbia deb. argillosi	13	7.50	5.85		13.18	12.75
[4] - limo e argilla sabbiosi	22.33	13.80	10.05		22.51	21.90

Modulo di Young (Mpa)

	NSPT	Prof. Strato	Schultze	Apollonia	
		(m)			
[1] - riporto/terreno	18	0.60	18.30	17.65	
vegetale					
[2] - sabbia	3.73	3.90	2.21	3.66	
limosa deb.					
argillosa e ghiaiosa					
[3] - limo e sabbia	13	7.50	12.66	12.75	
deb. argillosi					
[4] - limo e argilla	22.33	13.80	23.18	21.90	
sabbiosi					

Classificazione AGI

	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
[1] - riporto/terreno	18	0.60	A.G.I. (1977)	MOLTO
vegetale				CONSISTENTE
[2] - sabbia	3.73	3.90	A.G.I. (1977)	POCO
limosa deb.				CONSISTENTE
argillosa e ghiaiosa				
[3] - limo e sabbia	13	7.50	A.G.I. (1977)	CONSISTENTE
deb. argillosi				
[4] - limo e argilla	22.33	13.80	A.G.I. (1977)	MOLTO
sabbiosi				CONSISTENTE
Sabbiosi				CUNSISTENTE

Peso unita' di volume

	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume
				(KN/m^3)
[1] - riporto/terreno	18	0.60	Meyerhof	20.50
vegetale				
[2] - sabbia	3.73	3.90	Meyerhof	16.48
limosa deb.				
argillosa e ghiaiosa				
[3] - limo e sabbia	13	7.50	Meyerhof	20.01
deb. argillosi				
[4] - limo e argilla	22.33	13.80	Meyerhof	20.69
sabbiosi				

Peso unita' di volume saturo

	NSPT	Prof. Strato (m)	Correlazione	Peso unita' di volume saturo (KN/m ³)
[1] - riporto/terreno vegetale	18	0.60	Meyerhof	22.56
[2] - sabbia limosa deb. argillosa e ghiaiosa	3.73	3.90	Meyerhof	18.34
[3] - limo e sabbia deb. argillosi	13	7.50	Meyerhof	21.97
[4] - limo e argilla sabbiosi	22.33	13.80	Meyerhof	21.08

Velocita' onde di taglio

	NSPT	Prof. Strato (m)	Correlazione	Velocita' onde di taglio (m/s)
[1] - riporto/terreno vegetale	18	0.60		0
[2] - sabbia limosa deb. argillosa e ghiaiosa	3.73	3.90		0
[3] - limo e sabbia deb. argillosi	13	7.50		0
[4] - limo e argilla sabbiosi	22.33	13.80		0

TERRENI INCOERENTI Densita' relativa

	NSPT	Prof. Strato (m)	Gibbs & Holtz 1957	Meyerhof 1957	Schultze & Menzenbach	Skempton 1986
		~ /			(1961)	
[1] -	18	0.60	53.84	100	100	48.14
riporto/terren						
o vegetale						
[2] - sabbia	3.73	3.90	14.66	38.62	40.75	17.37
limosa deb.						
argillosa e						
ghiaiosa						
[3] - limo e	13	7.50	30.5	58.92	59.09	39.24
sabbia deb.						
argillosi						
[4] - limo e	22.33	13.80	31.71	60.66	61.95	49.2
argilla						
sabbiosi						

Angolo di resistenza al taglio

		01000112	<u></u>	,										
	NSPT	Prof.	Nspt	Peck-	Meye	Sowe	Malc	Meye	Schm	Mitch	Shioi-	Japan	De	Owas
		Strato	corret	Hans	rhof	rs	ev	rhof	ertma	ell &	Fuku	ese	Mello	aki &
		(m)	to per	on-Th	(1956	(1961	(1964	(1965	nn	Katti	ni	Natio		Iwasa
			prese	ornbu))))	(1977	(1981	1982	nal		ki
			nza	rn-M))	(ROA	Railw		
			falda	eyerh					Sabbi		D	ay		
				of					e		BRID			
				1956							GE			
											SPEC			
											IFIC			
											ATIO			
											N)			
[1] -	18	0.60	18	32.14	25.14	33.04	35.7	36.45	42	30-32	31.43	32.4	29.72	33.97
riport														
o/terr														
eno														
veget														
	2 72	2.00	2 7 2	28.07	21.07	20.04	20.11	21.12	0	<20	22.49	29.12	22.46	22.64
[2] -	3.75	3.90	3.75	28.07	21.07	29.04	29.11	31.13	U	50	22.40	28.12	22.40	23.04
Sabbi														
limos														
a deb														
a uco. aroill														
osae														
oba e														
osa														
[3] -	13	7.50	13	30.71	23.71	31.64	29.26	34.77	36.25	30-32	28.96	30.9	25.11	31.12

limo														
e														
sabbi														
a deb.														
argill														
osi														
[4] -	22.33	13.80	18.66	32.33	25.33	33.23	28.81	36.66	36.49	30-32	31.73	32.6	24.26	34.32
limo			5											
e														
argill														
a														
sabbi														
osi														

Modulo di Young (Mpa)

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Terzaghi	Schmertm ann (1978) (Sabbie)	Schultze- Menzenba ch (Sabbia ghiaiosa)	D'Appollo nia ed altri 1970 (Sabbia)	Bowles (1982) Sabbia Media
[1] - riporto/ter reno vegetale	18	0.60	18	29.70	14.12	20.90	30.89	16.18
[2] - sabbia limosa deb. argillosa e ghiaiosa	3.73	3.90	3.73		2.93			
[3] - limo e sabbia deb. argillosi	13	7.50	13	25.24	10.20	15.11	27.21	13.73
[4] - limo e argilla sabbiosi	22.33	13.80	18.665	30.24	14.64	21.67	31.38	16.51

Modulo Edometrico (Mpa)

	NSPT	Prof. Strato	Nspt	Buisman-S	Begemann	Farrent	Menzenbac
		(m)	corretto per	anglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)
[1] -	18	0.60	18	10.59	6.32	12.53	11.60
riporto/terre							
no vegetale							
[2] - sabbia	3.73	3.90	3.73		3.45	2.60	5.36

limosa deb.							
argillosa e							
ghiaiosa							
[3] - limo e	13	7.50	13	7.65	5.31	9.05	9.41
sabbia deb.							
argillosi							
[4] - limo e	22.33	13.80	18.665	10.98	6.45	13.00	11.89
argilla							
sabbiosi							

Classificazione AGI

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Classificazione
		(m)	per presenza		AGI
			falda		
[1] -	18	0.60	18	Classificazione	MODERATAM
riporto/terreno				A.G.I	ENTE
vegetale					ADDENSATO
[2] - sabbia	3.73	3.90	3.73	Classificazione	SCIOLTO
limosa deb.				A.G.I	
argillosa e					
ghiaiosa					
[3] - limo e	13	7.50	13	Classificazione	MODERATAM
sabbia deb.				A.G.I	ENTE
argillosi					ADDENSATO
[4] - limo e	22.33	13.80	18.665	Classificazione	MODERATAM
argilla sabbiosi				A.G.I	ENTE
_					ADDENSATO

Peso unita' di volume

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita' di
		(m)	per presenza		Volume
			falda		(KN/m ³)
[1] -	18	0.60	18	Terzaghi-Peck	15.43
riporto/terreno				1948	
vegetale					
[2] - sabbia	3.73	3.90	3.73	Terzaghi-Peck	13.68
limosa deb.				1948	
argillosa e					
ghiaiosa					
[3] - limo e	13	7.50	13	Terzaghi-Peck	14.85
sabbia deb.				1948	
argillosi					
[4] - limo e	22.33	13.80	18.665	Terzaghi-Peck	15.50
argilla sabbiosi				1948	

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'
		(m)	per presenza		Volume Saturo
			falda		(KN/m ³)
[1] -	18	0.60	18	Terzaghi-Peck	19.41
riporto/terreno				1948	
vegetale					
[2] - sabbia	3.73	3.90	3.73	Terzaghi-Peck	18.33
limosa deb.				1948	
argillosa e					
ghiaiosa					
[3] - limo e	13	7.50	13	Terzaghi-Peck	19.05
sabbia deb.				1948	
argillosi					
[4] - limo e	22.33	13.80	18.665	Terzaghi-Peck	19.46
argilla sabbiosi				1948	

Modulo di Poisson

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Poisson
[1] -	18	0.60	18	(A.G.I.)	0.32
riporto/terreno					
vegetale					
[2] - sabbia	3.73	3.90	3.73	(A.G.I.)	0.35
limosa deb.					
argillosa e					
ghiaiosa					
[3] - limo e	13	7.50	13	(A.G.I.)	0.33
sabbia deb.					
argillosi					
[4] - limo e	22.33	13.80	18.665	(A.G.I.)	0.32
argilla sabbiosi					

Modulo di deformazione a taglio dinamico (Mpa)

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Ohsaki (Sabbie pulite)	Robertson e Campanella (1983) e Imai & Tonouchi (1982)
[1] - riporto/terreno vegetale	18	0.60	18	96.47	71.68
[2] - sabbia limosa deb. argillosa e ghiaiosa	3.73	3.90	3.73	21.97	27.40

[3] - limo e	13	7.50	13	71.05	58.76
sabbia deb.					
argillosi					
[4] - limo e	22.33	13.80	18.665	99.82	73.29
argilla sabbiosi					

Velocita' onde di taglio

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Velocita' onde
		(m)	per presenza		di taglio
			falda		(m/s)
[1] -	18	0.60	18	Ohta & Goto	89.41
riporto/terreno				(1978) Limi	
vegetale					
[2] - sabbia	3.73	3.90	3.73	Ohta & Goto	100.46
limosa deb.				(1978) Limi	
argillosa e					
ghiaiosa					
[3] - limo e	13	7.50	13	Ohta & Goto	149.18
sabbia deb.				(1978) Limi	
argillosi					
[4] - limo e	22.33	13.80	18.665	Ohta & Goto	179.18
argilla sabbiosi				(1978) Limi	

Liquefazione

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Fs Liquefazione
[1] - riporto/terreno vegetale	18	0.60	18	Seed e Idriss (1971)	
[2] - sabbia limosa deb. argillosa e ghiaiosa	3.73	3.90	3.73	Seed e Idriss (1971)	
[3] - limo e sabbia deb. argillosi	13	7.50	13	Seed e Idriss (1971)	
[4] - limo e argilla sabbiosi	22.33	13.80	18.665	Seed e Idriss (1971)	

Coefficiente spinta a Riposo

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	K0
[1] - riporto/terreno vegetale	18	0.60	18		

[2] - sabbia	3.73	3.90	3.73	
limosa deb.				
argillosa e				
ghiaiosa				
[3] - limo e	13	7.50	13	
sabbia deb.				
argillosi				
[4] - limo e	22.33	13.80	18.665	
argilla sabbiosi				

Qc (Resistenza punta Penetrometro Statico)

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Qc (Mpa)
[1] - riporto/terreno vegetale	18	0.60	18		
[2] - sabbia limosa deb. argillosa e ghiaiosa	3.73	3.90	3.73		
[3] - limo e sabbia deb. argillosi	13	7.50	13		
[4] - limo e argilla sabbiosi	22.33	13.80	18.665		

GEOSTRU CHANGES FROM: PREFERENCES OPTIONS COMPANY

PROVA PENETROMETRICA DINAMICA Nr.3 Strumento utilizzato... DPSH

....

Committente: Comune di Rieti Descrizione: Completamento pista ciclabile Localita': Ponte Cavallotti, Rieti

PROVA ... DPSH2

Strumento utilizzato...DEEP DRILL SP200Prova eseguita in data07-09-2021Profondita' prova10.20 mtFalda rilevata10.20 mt

Tipo elaborazione Nr. Colpi: Medio

Profondita'	Nr. Colpi	Calcolo	Res.	Res.	Pres.	Pres.
(m)	-	coeff.	dinamica	dinamica	ammissibile	ammissibile
		riduzione	ridotta	(Mpa)	con riduzione	Herminier -
		sonda Chi	(Mpa)		Herminier -	Olandesi
					Olandesi	(KPa)
					(KPa)	
0.30	17	0.803	10.65	13.27	532.69	663.63
0.60	11	0.847	6.81	8.04	340.63	402.15
0.90	7	0.842	4.31	5.12	215.36	255.92
1.20	2	0.836	1.22	1.46	61.15	73.12
1.50	7	0.831	4.00	4.81	200.02	240.64
1.80	1	0.826	0.57	0.69	28.41	34.38
2.10	1	0.822	0.56	0.69	28.25	34.38
2.40	1	0.817	0.53	0.65	26.51	32.44
2.70	1	0.813	0.53	0.65	26.37	32.44
3.00	1	0.809	0.52	0.65	26.23	32.44
3.30	3	0.805	1.48	1.84	74.14	92.14
3.60	8	0.801	3.94	4.91	196.77	245.70
3.90	13	0.747	5.97	7.99	298.33	399.26
4.20	14	0.744	6.07	8.16	303.58	408.21
4.50	14	0.740	6.04	8.16	302.21	408.21
4.80	11	0.787	5.05	6.41	252.45	320.73
5.10	17	0.734	6.93	9.44	346.30	471.80
5.40	13	0.731	5.28	7.22	263.75	360.79
5.70	9	0.778	3.89	5.00	194.38	249.78
6.00	10	0.775	4.11	5.30	205.32	264.77
6.30	9	0.773	3.68	4.77	184.17	238.29
6.60	9	0.770	3.67	4.77	183.57	238.29
6.90	9	0.768	3.50	4.56	174.96	227.82
7.20	21	0.666	7.08	10.63	353.85	531.59
7.50	21	0.663	7.05	10.63	352.67	531.59
7.80	27	0.661	8.66	13.09	432.95	654.70
8.10	22	0.659	7.03	10.67	351.68	533.46
8.40	22	0.657	7.01	10.67	350.62	533.46
8.70	40	0.555	10.34	18.61	516.88	930.75
9.00	42	0.553	10.82	19.55	540.92	977.29
9.30	40	0.552	10.27	18.61	513.49	930.75
9.60	44	0.550	10.82	19.68	541.19	984.07
9.90	42	0.548	10.30	18.79	515.00	939.34

10.20	41	0.547	10.02	18.34	501.22	916.98
-------	----	-------	-------	-------	--------	--------

Prof.	NPDM	Rd	Tipo	Clay	Peso	Peso	Tension	Coeff.	NSPT	Descrizi
Strato		(Mpa)		Fraction	unita' di	unita' di	e	di		one
(m)				(%)	volume	volume	efficace	correlaz		
					(KN/m^3)	saturo	(KPa)	. con		
						(KN/m ³)		Nspt		
0.6	14	10.66	Incoere	0	20.4	22.46	6.12	1.18	16.49	riporto/t
			nte -							erreno
			coesivo							vegetale
3.6	3.2	2.15	Incoere	0	16.57	18.34	32.27	1.18	3.77	sabbia
			nte -							limosa
			coesivo							deb.
										argillosa
										e
										ghiaiosa
6.9	11.64	6.52	Incoere	0	20.1	22.06	65.29	1.18	13.71	limo e
			nte -							argilla
			coesivo							sabbiosi
										poco
										consiste
										nti
8.4	22.6	11.14	Incoere	0	20.89	22.26	94.85	1.18	26.62	limo e
			nte -							argilla
			coesivo							sabbiosi
10.2	41.5	18.93	Incoere	0	24.52	24.52	117.43	1.18	48.89	ghiaia
			nte -							sabbiosa
			coesivo							

STIMA PARAMETRI GEOTECNICI PROVA Nr.4

TERRENI COESIVI

Coesione non drenata (KPa)

	NSPT	Prof.	Terza	Sangl	Terza	U.S.D	Schm	SUN	Fletch	Houst	Shioi	Bege	De
		Strato	ghi-Pe	erat	ghi-Pe	.M.S.	ertma	DA	er	on	-	mann	Beer
		(m)	ck		ck	Μ	nn	(1983	(1965	(1960	Fukui		
					(1948		1975)))	1982		
)			Benas	Argill				
								si e	a di				
								Vanne	Chica				
								lli	go				
[1] -	16.49	0.60	109.1	202.1	0.00	63.35	159.6	319.7	139.2	172.3	80.81	279.9	202.1
riport			5	2			5	9	5	0		8	2
o/terre													
no													
vegeta													
le													
[2] -	3.77	3.60	23.14	46.19	0.00	15.10	35.89	64.53	33.54	70.02	18.53	23.44	46.19

sabbia													
limos													
a deb.													
argillo													
sa e													
ghiaio													
sa									ı				
[3] -	13.71	6.90	90.71	168.0	0.00	53.15	132.4	195.6	117.1	148.2	67.27	141.0	168.0
limo e				9			9	4	9	8		2	9
argilla									1	ļ			
sabbio							,		1				
si							,		I				
poco							,		I				
consis							,		I				
tenti							,		I				
[4] -	26.62	8.40	176.2	326.3	0.00	98.95	259.1	334.2	215.0	268.1	130.5	340.7	326.3
limo e			3	7			9	1	6	1	3	8	7
argilla							,		1				
sabbio							,		1				
si									ı				
[5] -	48.89	10.20	323.6	599.2	0.00	168.4	479.5	567.9	355.2	523.4	239.6	677.5	599.2
ghiaia			2	8		8	5	0	9	8	7	4	8
sabbio													
sa													

Qc (Resistenza punta Penetrometro Statico)

	NSPT	Prof. Strato	Correlazione	Qc
		(m)		(Mpa)
[1] - riporto/terreno	16.49	0.60	Robertson (1983)	3.23
vegetale				
[2] - sabbia limosa	3.77	3.60	Robertson (1983)	0.74
deb. argillosa e				
ghiaiosa				
[3] - limo e argilla	13.71	6.90	Robertson (1983)	2.69
sabbiosi poco				
consistenti				
[4] - limo e argilla	26.62	8.40	Robertson (1983)	5.22
sabbiosi				
[5] - ghiaia	48.89	10.20	Robertson (1983)	9.59
sabbiosa				

Modulo Edometrico (Mpa)

	NSPT	Prof. Strato	Stroud e	Vesic (1970)	Trofimenkov	Buisman-San
		(m)	Butler (1975)		(1974),	glerat
					Mitchell e	
					Gardner	
[1] -	16.49	0.60	7.42		16.67	16.17

riporto/terren						
o vegetale						
[2] - sabbia	3.77	3.60	1.70	5.55	3.95	4.62
limosa deb.						
argillosa e						
ghiaiosa						
[3] - limo e	13.71	6.90	6.17		13.89	13.44
argilla						
sabbiosi poco						
consistenti						
[4] - limo e	26.62	8.40	11.98		26.80	26.11
argilla						
sabbiosi						
[5] - ghiaia	48.89	10.20	22.00		49.08	47.94
sabbiosa						

Modulo di Young (Mpa)

	NSPT	Prof. Strato (m)	Schultze	Apollonia
[1] - riporto/terreno	16.49	0.60	16.60	16.17
vegetale				
[2] - sabbia limosa	3.77	3.60	2.25	3.70
deb. argillosa e				
ghiaiosa				
[3] - limo e argilla	13.71	6.90	13.46	13.44
sabbiosi poco				
consistenti				
[4] - limo e argilla	26.62	8.40	28.02	26.11
sabbiosi				
[5] - ghiaia	48.89	10.20	53.14	47.94
sabbiosa				

Classificazione AGI

	NSPT	Prof. Strato	Correlazione	Classificazione
		(m)		
[1] - riporto/terreno	16.49	0.60	A.G.I. (1977)	MOLTO
vegetale				CONSISTENTE
[2] - sabbia limosa	3.77	3.60	A.G.I. (1977)	POCO
deb. argillosa e				CONSISTENTE
ghiaiosa				
[3] - limo e argilla	13.71	6.90	A.G.I. (1977)	CONSISTENTE
sabbiosi poco				
consistenti				
[4] - limo e argilla	26.62	8.40	A.G.I. (1977)	MOLTO
sabbiosi				CONSISTENTE
[5] - ghiaia	48.89	10.20	A.G.I. (1977)	ESTREM.
sabbiosa				CONSISTENTE

Peso unita' di volume

	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume
				(KN/m^3)
[1] - riporto/terreno	16.49	0.60	Meyerhof	20.40
vegetale				
[2] - sabbia limosa	3.77	3.60	Meyerhof	16.57
deb. argillosa e				
ghiaiosa				
[3] - limo e argilla	13.71	6.90	Meyerhof	20.10
sabbiosi poco				
consistenti				
[4] - limo e argilla	26.62	8.40	Meyerhof	20.89
sabbiosi				
[5] - ghiaia	48.89	10.20	Meyerhof	24.52
sabbiosa				

Peso unita' di volume saturo

	NSPT	Prof. Strato	Correlazione	Peso unita' di
		(m)		volume saturo
				(KN/m^3)
[1] - riporto/terreno	16.49	0.60	Meyerhof	22.46
vegetale				
[2] - sabbia limosa	3.77	3.60	Meyerhof	18.34
deb. argillosa e				
ghiaiosa				
[3] - limo e argilla	13.71	6.90	Meyerhof	22.06
sabbiosi poco				
consistenti				
[4] - limo e argilla	26.62	8.40	Meyerhof	22.26
sabbiosi				
[5] - ghiaia	48.89	10.20	Meyerhof	24.52
sabbiosa				

Velocita' onde di taglio

	NSPT	Prof. Strato	Correlazione	Velocita' onde di
		(m)		taglio
				(m/s)
[1] - riporto/terreno	16.49	0.60		0
vegetale				
[2] - sabbia limosa	3.77	3.60		0
deb. argillosa e				
ghiaiosa				
[3] - limo e argilla	13.71	6.90		0
sabbiosi poco				
consistenti				
[4] - limo e argilla	26.62	8.40		0

sabbiosi			
[5] - ghiaia	48.89	10.20	0
sabbiosa			

TERRENI INCOERENTI

Densita' relativa

	NSPT	Prof. Strato (m)	Gibbs & Holtz 1957	Meyerhof 1957	Schultze & Menzenbach (1961)	Skempton 1986
[1] - riporto/terren o vegetale	16.49	0.60	51.66	97.66	100	45.64
[2] - sabbia limosa deb. argillosa e ghiaiosa	3.77	3.60	15.89	40.19	43.19	17.48
[3] - limo e argilla sabbiosi poco consistenti	13.71	6.90	35.36	66.53	66.56	40.62
[4] - limo e argilla sabbiosi	26.62	8.40	40.26	74.19	73.68	52.41
[5] - ghiaia sabbiosa	48.89	10.20	47.19	86.17	85.51	65.42

Angolo di resistenza al taglio

	NSPT	Prof.	Nspt	Peck-	Meye	Sowe	Malc	Meye	Schm	Mitch	Shioi-	Japan	De	Owas
		Strato	corret	Hans	rhof	rs	ev	rhof	ertma	ell &	Fuku	ese	Mello	aki &
		(m)	to per	on-Th	(1956	(1961	(1964	(1965	nn	Katti	ni	Natio		Iwasa
			prese	ornbu))))	(1977	(1981	1982	nal		ki
			nza	rn-M))	(ROA	Railw		
			falda	eyerh					Sabbi		D	ay		
				of					e		BRID			
				1956							GE			
											SPEC			
											IFIC			
											ATIO			
											N)			
[1] -	16.49	0.60	16.49	31.71	24.71	32.62	35.56	35.97	41.67	30-32	30.73	31.95	29.39	33.16
riport														
o/terr														
eno														
veget														
ale														
[2] -	3.77	3.60	3.77	28.08	21.08	29.06	29.56	31.15	0	<30	22.52	28.13	22.78	23.68
sabbi														

a limos a deb. argill osa e ghiai osa														
[3] - limo e	13.71	6.90	13.71	30.92	23.92	31.84	30.12	35.02	37.31	30-32	29.34	31.11	26.4	31.56
argili a sabbi														
poco consi stenti														
[4] - limo	26.62	8.40	20.81	32.95	25.95	33.83	29.99	37.31	38.39	30-32	32.67	33.24	26.83	35.4
argill a sabbi														
osi [5] - ghiaia sabbi	48.89	10.20	31.94 5	36.13	29.13	36.94	30.22	40.08	40.06	32-35	36.89	36.58	27.58	40.28

Modulo di Young (Mpa)

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Terzaghi	Schmertm ann (1978) (Sabbie)	Schultze- Menzenba ch (Sabbia ghiaiosa)	D'Appollo nia ed altri 1970 (Sabbia)	Bowles (1982) Sabbia Media
[1] - riporto/ter reno vegetale	16.49	0.60	16.49	28.42	12.94	19.15	29.78	15.44
[2] - sabbia limosa deb. argillosa e ghiaiosa	3.77	3.60	3.77		2.96			
[3] - limo e argilla sabbiosi	13.71	6.90	13.71	25.92	10.76	15.93	27.74	14.08

poco consistenti								
[4] - limo	26.62	8.40	20.81	31.93	16.33	24.15	32.96	17.56
e argilla								
sabbiosi								
[5] -	48.89	10.20	31.945	39.56	25.06	37.03	41.15	23.02
ghiaia								
sabbiosa								

Modulo Edometrico (Mpa)

	NSPT	Prof. Strato	Nspt	Buisman-S	Begemann	Farrent	Menzenbac
		(m)	corretto per	anglerat	1974	1963	h e Malcev
			presenza	(sabbie)	(Ghiaia con		(Sabbia
			falda		sabbia)		media)
[1] -	16.49	0.60	16.49	9.70	6.02	11.48	10.94
riporto/terre							
no vegetale							
[2] - sabbia	3.77	3.60	3.77		3.45	2.63	5.38
limosa deb.							
argillosa e							
ghiaiosa							
[3] - limo e	13.71	6.90	13.71	8.07	5.46	9.55	9.72
argilla							
sabbiosi							
poco							
consistenti							
[4] - limo e	26.62	8.40	20.81	12.24	6.89	14.49	12.83
argilla							
sabbiosi							
[5] - ghiaia	48.89	10.20	31.945	18.80	9.13	22.24	17.70
sabbiosa						1	

Classificazione AGI

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Classificazione
		(m)	per presenza		AGI
			falda		
[1] -	16.49	0.60	16.49	Classificazione	MODERATAM
riporto/terreno				A.G.I	ENTE
vegetale					ADDENSATO
[2] - sabbia	3.77	3.60	3.77	Classificazione	SCIOLTO
limosa deb.				A.G.I	
argillosa e					
ghiaiosa					
[3] - limo e	13.71	6.90	13.71	Classificazione	MODERATAM
argilla sabbiosi				A.G.I	ENTE
poco consistenti					ADDENSATO
[4] - limo e	26.62	8.40	20.81	Classificazione	MODERATAM

argilla sabbiosi				A.G.I	ENTE
					ADDENSATO
[5] - ghiaia	48.89	10.20	31.945	Classificazione	ADDENSATO
sabbiosa				A.G.I	

Peso unita' di volume

	NSPT	Prof. Strato (m)	Nspt corretto per presenza	Correlazione	Peso Unita' di Volume
		~ /	falda		(KN/m^3)
[1] -	16.49	0.60	16.49	Terzaghi-Peck	15.26
riporto/terreno				1948	
vegetale					
[2] - sabbia	3.77	3.60	3.77	Terzaghi-Peck	13.69
limosa deb.				1948	
argillosa e					
ghiaiosa					
[3] - limo e	13.71	6.90	13.71	Terzaghi-Peck	14.94
argilla sabbiosi				1948	
poco consistenti					
[4] - limo e	26.62	8.40	20.81	Terzaghi-Peck	15.74
argilla sabbiosi				1948	
[5] - ghiaia	48.89	10.20	31.945	Terzaghi-Peck	16.83
sabbiosa				1948	

Peso unita' di volume saturo

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Peso Unita'
		(m)	per presenza falda		Volume Saturo (KN/m ³)
[1] - riporto/terreno vegetale	16.49	0.60	16.49	Terzaghi-Peck 1948	19.31
[2] - sabbia limosa deb. argillosa e ghiaiosa	3.77	3.60	3.77	Terzaghi-Peck 1948	18.33
[3] - limo e argilla sabbiosi poco consistenti	13.71	6.90	13.71	Terzaghi-Peck 1948	19.11
[4] - limo e argilla sabbiosi	26.62	8.40	20.81	Terzaghi-Peck 1948	19.60
[5] - ghiaia sabbiosa	48.89	10.20	31.945	Terzaghi-Peck 1948	20.27

Modulo di Poisson

	NSPT	Prof. Strato (m)	Nspt corretto per presenza	Correlazione	Poisson
		()	falda		
[1] -	16.49	0.60	16.49	(A.G.I.)	0.32
riporto/terreno					
vegetale					
[2] - sabbia	3.77	3.60	3.77	(A.G.I.)	0.35
limosa deb.					
argillosa e					
ghiaiosa					
[3] - limo e	13.71	6.90	13.71	(A.G.I.)	0.33
argilla sabbiosi					
poco consistenti					
[4] - limo e	26.62	8.40	20.81	(A.G.I.)	0.31
argilla sabbiosi					
[5] - ghiaia	48.89	10.20	31.945	(A.G.I.)	0.29
sabbiosa					

Modulo di deformazione a taglio dinamico (Mpa)

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Ohsaki (Sabbie pulite)	Robertson e Campanella (1983) e Imai & Tonouchi (1982)
[1] - riporto/terreno vegetale	16.49	0.60	16.49	88.84	67.94
[2] - sabbia limosa deb. argillosa e ghiaiosa	3.77	3.60	3.77	22.19	27.58
[3] - limo e argilla sabbiosi poco consistenti	13.71	6.90	13.71	74.69	60.70
[4] - limo e argilla sabbiosi	26.62	8.40	20.81	110.56	78.32
[5] - ghiaia sabbiosa	48.89	10.20	31.945	165.41	101.77

Velocita' onde di taglio

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Velocita' onde
		(m)	per presenza		di taglio
			falda		(m/s)
[1] -	16.49	0.60	16.49	Ohta & Goto	88.06
riporto/terreno				(1978) Limi	
vegetale					

[2] - sabbia	3.77	3.60	3.77	Ohta & Goto	99.32
limosa deb.				(1978) Limi	
argillosa e					
ghiaiosa					
[3] - limo e	13.71	6.90	13.71	Ohta & Goto	148.19
argilla sabbiosi				(1978) Limi	
poco consistenti					
[4] - limo e	26.62	8.40	20.81	Ohta & Goto	171.29
argilla sabbiosi				(1978) Limi	
[5] - ghiaia	48.89	10.20	31.945	Ohta & Goto	191.56
sabbiosa				(1978) Limi	

Liquefazione

	NSPT	Prof. Strato	Nspt corretto	Correlazione	Fs
		(m)	per presenza		Liquefazione
			falda		
[1] -	16.49	0.60	16.49	Seed e Idriss	
riporto/terreno				(1971)	
vegetale					
[2] - sabbia	3.77	3.60	3.77	Seed e Idriss	
limosa deb.				(1971)	
argillosa e					
ghiaiosa					
[3] - limo e	13.71	6.90	13.71	Seed e Idriss	
argilla sabbiosi				(1971)	
poco consistenti					
[4] - limo e	26.62	8.40	20.81	Seed e Idriss	
argilla sabbiosi				(1971)	
[5] - ghiaia	48.89	10.20	31.945	Seed e Idriss	
sabbiosa				(1971)	

Coefficiente spinta a Riposo

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	KO
[1] - riporto/terreno vegetale	16.49	0.60	16.49		
[2] - sabbia limosa deb. argillosa e ghiaiosa	3.77	3.60	3.77		
[3] - limo e argilla sabbiosi poco consistenti	13.71	6.90	13.71		
[4] - limo e argilla sabbiosi	26.62	8.40	20.81		

[5] abiaia	18 80	10.20	21.045	
[5] - ginala	40.09	10.20	51.945	
sabbiosa				

Qc (Resistenza punta Penetrometro Statico)

	NSPT	Prof. Strato (m)	Nspt corretto per presenza falda	Correlazione	Qc (Mpa)
[1] -	16.49	0.60	16.49		
riporto/terreno					
vegetale					
[2] - sabbia	3.77	3.60	3.77		
limosa deb.					
argillosa e					
ghiaiosa					
[3] - limo e	13.71	6.90	13.71		
argilla sabbiosi					
poco consistenti					
[4] - limo e	26.62	8.40	20.81		
argilla sabbiosi					
[5] - ghiaia	48.89	10.20	31.945		
sabbiosa					

GEOSTRU CHANGES FROM: PREFERENCES OPTIONS COMPANY

PROVA PENETROMETRICA DINAMICA Nr.3 Strumento utilizzato... DPSH

....

Committente: Comune di Rieti Descrizione: Completamento pista ciclabile Localita': Ponte Cavallotti, Rieti

GEOSTRU CHANGES FROM: PREFERENCES OPTIONS COMPANY

•••••

PROVA PENETROMETRICA DINAMICA Nr.4 Strumento utilizzato... DPSH

Committente: Comune di Rieti Descrizione: Completamento pista ciclabile Localita': Ponte Cavallotti, Rieti

SIGNATURE 1

Best model

Mean model Vs (m/s): 120, 207, 359, 419, 607, 695 Standard deviations (m/s): 3, 9, 29, 28, 53, 38 SISMOSTRATIGRAFIA Vs30

0

Thickness (m): 6.5, 6.7, 5.4, 6.0, 6.4 Standard deviations (m/s): 0.3, 0.5, 0.6, 0.5, 0.7 Density (gr/cm3) (approximate values): 1.70, 1.85, 2.00, 2.04, 2.14, 2.18 Seismic/Dynamic Shear modulus (MPa) (approximate values): 24 79 257 358 788 1051 Estimated static shear modulus (MPa) (approximate values): 0 0 0 0 0 0 Analyzing Phase velocities Considered dispersion curve: picking.cdp Analysis: Rayleigh Waves Approximate values for Vp and Poisson (please, see manual) Vp (m/s): 226 428 731 1059 1115 1316 Poisson: 0.30 0.35 0.34 0.41 0.29 0.31

Vs30 and VsE (m/s): 240 240

Via della Chimica snc, 02100 RIETI- www.geo-3d.it	Rapporto prove Località Ponte Cavallotti - Rieti (RI) Committente: Comune di Rieti	Spettri di velocità, Curve di dispersione, Modellazione, Sismostratigrafia
---	--	---

Mean model Vs (m/s): 124, 217, 292, 461, 584, 735 Standard deviations (m/s): 1, 12, 39, 85, 86, 154 SISMOSTRATIGRAFIA Vs30

Thickness (m): 6.5, 7.5, 7.5, 7.1, 7.1 Standard deviations (m/s): 0.2, 0.9, 0.9, 1.4, 1.0 Density (gr/cm3) (approximate values): 1.71, 1.86, 1.94, 2.06, 2.13, 2.19 Seismic/Dynamic Shear modulus (MPa) (approximate values): 26 88 165 439 726 1184 Estimated static shear modulus (MPa) (approximate values): 0 0 0 0 0 0 Analyzing Phase velocities Considered dispersion curve: picking.cdp Analysis: Rayleigh Waves Approximate values for Vp and Poisson (please, see manual) Vp (m/s): 229 464 600 903 1202 1673 Poisson: 0.29 0.36 0.34 0.32 0.35 0.38

Vs30 and VsE (m/s): 230 230

Via della Chimica sno 02100 RIETI- www.geo-3d.it	, Rapporto prove Località Ponte Cavallotti - Rieti (RI) Committente: Comune di Rieti	Spettri di velocità, Curve di dispersione, Modellazione, Sismostratigrafia
--	--	---

SPETTRI DI AMPIEZZA E RAPPORTI SPETTRALI H/V-HVSR1

C: 3D	Via della Chimica snc, 02100 RIETI- www.geo-3d.it	Rapporto prove Località Ponte Cavallotti - Rieti (RI) Committente: Comune di Rieti	Spettri di ampiezza e rapporti spettrali H/V Persistenza delle singole componenti- Criteri Sesame HVSR
-----------------	---	--	--

SPETTRI DI AMPIEZZA E RAPPORTI SPETTRALI H/V-HVSR2

#2. [nc > 200]: 8430 > 200 (OK)

Via della Chimica snc,	Rapporto prove	Spettri di ampiezza e rapporti spettrali H/V
02100 RIETI-	Località Ponte Cavallotti - Rieti (RI)	Persistenza delle singole componenti-
www.geo-3d.it	Committente: Comune di Rieti	Criteri Sesame HVSR

Laboratorio Geotecnico Autorizzato ai sensi del DPR 380/01 e della circolare 7618/2010. Aut.del Ministero delle infrastrutture e dei Trasporti Settore A E B - Decreto N° 131/2020

Azienda Certificata UNI EN ISO 9001:2015

Certificato nº 207	2-21 Pag. 1 di 13	del 20/09/2	2021	Accettazione n° 01454_2	1 del	03/0	9/2021
Richiedente : Geo 3	3D srl						
Provenienza dei Campioni	Realizzazione pist	a ciclabile pres	so Por	te Cavallotti - Rieti			
	Sondaggio: S1 Note :	Campione:	C1	Profondità di Prelievo da m	5,50	a m	6,00

Caratteristiche del Campionamento_Cod prova MOLAB IO622

Data prelievo del campione	31/08/2021	Data di consegna del campione	03/09/2021
Data inizio prova	03/09/2021	Data fine prova	16/09/2021
Tipo di perforazione (dichiarata)		Forma del Campione	Cilindrica
Tipo di campionatore (dichiarata)	Shelby	Diametro della Carota cm	8,5
Contenitore	Fustella in metallo	Lunghezza della Carota cm	37
Diametro esterno del contenitore cm	9,0	Classe di Qualità (dichiarata)	
Lunghezza del Contenitore cm	64,0		

ALTO	PROVE FISICHE	PROVE MECC	DESCRIZIONE DEL CAMPIONE	POCKET (kPa)
5 10 cm 15 20 cm 25 30 cm	wn γn Ω γs Gran		Sabbia limosa debolmente argillosa e ghiaiosa di colore grigio olivastro, non plastica in relazione alla frazione argillosa, reazione all'acido cloridrico positiva.	N.D.
35 40 cm 45 50 cm	LL e LP L.R.			N.D.
BASSO	Note: II co	Lo Spe	era chiuso con tappi e nastro adesivo.	

Sagedil S.r.I. - Via Giovanni Falcone, 51/c 02032 Passo Corese - Fara Sabina (RI) Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

SA.G.EDIL s.r.l.	Laboratorio Geo ai sensi del DPR infrastrutture e	otecnico Autorizzato 380/01 e della circolare 7618/2010. / dei Trasporti Settore AEB - Decre	Aut.del Ministero delle eto N° 131/2020
laboratorio prove materiali		Azien	da Certificata UNI EN ISO 9001:2015
Certificato nº 2072-21	Pag. 2 di 13 del 20/09 /	2021 Accettazione n° 0'	1454_21 del 03/09/2021
Provenienza dei Campioni	ealizzazione pista ciclabile pres	sso Ponte Cavallotti - Rieti	
So No	ondaggio: S1 Campione: ote :	C1 Profondità di Prelievo	dam 5,50 am 6,00
	Risultato	delle Prove	
	Contenuto d'acqua (UNICEN ISO/TS 17892-1	a allo stato naturale) - Cod prova MOLAB IO623	
Data inizio prova		Data fine prova	
	Determinazione W1	Determinazione W ₂	Determinazione W ₃
Peso lordo umido [g]			
Peso lordo secco [g]		-	
Tara [g]			
Umidità relativa W [%]	-	0.000	and the second s
Umidità Naur	ale Media Wn [%]	Devi	azione Standard
Note :			
	Risultato d	delle Prove	
	Massa volumica (UNICEN ISO/TS 17892-2)	allo stato naturale - Cod prova MOLAB IO623	
Data inizio prova	03/09/2021	Data fine prova	03/09/2021
and the second second second	Metodo usato:	Fustella Volum	etrica Tarata
Peso umido del Terreno [g]	158,69	Volume [cm ³]	71,75
	Peso di Volume Naturale γn	[kN/m ³] 21,67	
Note :			
Sagedil S.r.I Via Giovanni Falcone,	51/c	Direttore di Ing. Lanfra	Laboratorio Inco Zonezh

Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

SA.G.EDIL s.r	:1.		Laborate ai sensi dei Tras	orio Geotecnio del DPR 380/(sporti Settore	coAuto 01 e del A E B	orizzato Ila circolare 761 - Decreto Nº 1	8/2010. <i>J</i> 31/2020	Aut.del Min	istero dell	e infrast	rutture e
Laboratorio Geotecnico Autorizzato ai sensi del DPR 380/01 e della circolare 761 dei Trasporti Settore A E B - Decreto N° 1 Jaboratorio prove maleriali Certificato n° 2072-21 Pag. 4 di 13 del 20/09/2021 Accettazion Richiedente : Geo 3D srl Provenienza dei Campioni Realizzazione pista ciclabile presso Ponte Cavallotti - Sondaggio: S1 Campione: C1	Az	zienda Certi	ficata UNI	EN ISO §	9001:2015						
Certificato n°	2072-21	Pag. 4 di	13 d	el 20/09/20	021	Accettazio	ne n° [01454_2	21 del	03/0	9/2021
Richiedente :	Geo 3D srl										
Provenienza de	i Campioni	Realizzazione Sondaggio: Note :	pista cic S1 Ci	labile press ampione:	o Pon C1 F	te Cavallotti - Profondità di l	Rieti Prelievo	da m	5,50	am	6,00

Risultato delle Prove

Analisi Granulometrica

(UNICEN ISO/TS 17892-4) - Cod prova MOLAB IO624

	Data inizio	prova 0:	3/09/2021		Data fine	prova 1	4/09/2021
	Peso secco i	niziale vagliatura	[g] 159,23	Pe	eso secco iniziale	sedimentazione	g] 65,50
Misurazio Peso secco	Diametro	Trattenuto		4	Peso secco cumulativo [g]	Diametro medio [mm]	Trattenuto cumulativo [%]
cumulativo [g]	meaio [mm]				2,07	2,000	1,3
			1	/	2,89	1,000	1,8
	and the factor of the		1	/	3,16	0,850	1,98
			1	/	4,52	0,425	2,84
			1 /		12,79	0,250	8,03
					31,82	0,180	19,98
					50,95	0,150	32,00
					83,33	0,106	52,34
					103,63	0,075	65,08
	and		/		115,30	0,063	72,4

Tempo (sec)	Lettura areometro	Tenperatura (°C)	Correzione	Diametro medio (mm)	Trattenuto cumulativo (%)
30	11	23,2	0,5	0,0602	74,31
60	10	23,2	0,5	0,0493	76,80
360	9,0	23,2	0,5	0,0204	79,80
990	7,8	23,2	0,5	0,0124	82,79
4500	7,0	23,2	0,5	0,0059	84,79
7200	6,0	23,2	0,5	0,0047	87,28
18000	5,0	23,5	0,5	0,0030	90,27
86400	4,0	23	0,5	0,0014	92,27

Note :

Le Sperimentatore Riccardo Ottavi

Direttore di Laboratorio Ing. Lanfranco Zonetti

Sagedil S.r.I. - Via Giovanni Falcone, 51/c 02032 Passo Corese - Fara Sabina (RI) Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

oratorio prove materia	ali					Azi	enda Certificata I	UNI EN I	SO 9001:2
ertificato n°	2072-21	Pag. 5 di 1	3 del 2	0/09/2021	Accettazio	ne n°	01454_21	del)3/09/202
ichiedente :	Geo 3D srl								
ovenienza dei	Campioni Re	ealizzazione p	ista ciclabile p	resso Ponte	Cavallotti - F	lieti			
	So	ondaggio n. ote :	S1 Camp	bione n. C1	Profondità	di Prelie	evo da m 🚦	5, 50 a	m 6,0
			Risultato	delle Pro	ve				
		(UNICEN	Curva gra ISO/TS 17892-	anulometric 4) - Cod prova	a MOLAB 1063	0			
PASS	ANTE AI SETAC	CI N ₁₀ (2 m	m) 99	% N ₄₀ (0),425 mm) 97	′ %	N ₂₃₀ (0,063 mm	28 %	,
GHIAI	A 1	% SA	BBIA 71	%	LIMO	20 %	ARGILLA	8 %	<i>,</i>]
		Cu	rva Gra	nulome	etrica				
0									⊤ 100
0									90
0									- 80
o <u></u>									- 70
o <u>↓ ↓ ↓ ↓ ↓</u>									- 60
D								_	- 50
,								_	40
) +				<u> </u>					- 30
				March 1					- 20
					-				- 10
									0
00,000	10,000	1,000	0,10 Diametro dei	00 grani (mm)	0,010		0,001	0,0	000
ESCRIZION	E GRANULOMET	RICA : Sabbi	a limosa debo	Imente argill	osa e ghiaios	a	$\boldsymbol{\mathcal{L}}$		
060 (mm) = 0	,135 D	10 (mm) = 0,0	0315	(Coeficiente d	Uniforr	nità ĆU = 42 ,	86	
	Lo Sperimenta Riecardo Otta	tore				Ing. Lanf	di Vaboratorio		

Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

SA.G.EDIL s.r.l.		Laboratorio Geotecnico Autorizzato ai sensi del DPR 380/01 e della circolare 7618/2010. Aut.del Ministero delle infrastrutture e dei Trasporti Settore A E B - Decreto N° 131/2020					
laboratorio prove materiali				Azienda Certific	cata UNI EN ISO	9001:2015	
Certificato nº 20	072-21 Pag. 6 di	13 del 20/09/2021	Accettazi	one n° 01454_21	del 03/0	9/2021	
Richiedente : Geo 3	BD srl						
Provenienza dei Camr	ioni Realizzazione	nista ciclabile presso Ponte	Cavallotti	- Rieti			
r to to moniza doi o ding			ouraiou	, dou			
Sondaggio: S1 Campione: C1 Profondità di Prelievo da m 5,50 a m 6, Note :							
		Risultato delle Pr	ove				
	(UNICEN I	Prova di Taglio Diretto SO/TS 17892-10) - Cod prova	a MOLAB IC	0636-639			
Data inizio prova 03/09/2021			Data fine pr		va 14/09/2021		
	Caratteris	tiche dei provini sottopo	sti a prova	a			
		Provino	1	2	3		
		Altezza [cm]	2.000	2.040	2.070		
		Area [cm ²]	36.020	35.990	36.020		
Volume [cm ³]				71,35	71,90		
Peso di Volume [kN/m ³]			21,88	21,88	21,29		
Contenuto d'acqua [%]			22,9	22,2	20,7		
Peso di Volume dei grani [kN/m ³]							
Indice dei vuoti			State				
Grado di saturazione [%]							
					1		
		Fase di Consolidazio	one				

Provino	1	2	3	
Pressione di consolidazione (kPa)	98	196	294	
Cedimento (mm)	0,832	0,869	0,899	
Fase di taglio		and the second second second		
Provino	1	2	3	
Velocità di taglio mm/min	0,0042	0,0042	0,0042	
Spostamento orizontale a rottura (mm)	4,59	4,74	1,03	
Deformazione Verticale a rottura (%)	1,53	1,01	1,03	
Contenuto finale d'acqua %	24,5	24,3	23,7	
Tensione di taglio a rottura(mm)	73	166	237	

Note : Direttore di Vaboratorio Ing. Lanfranco Zonetti Sperimentatore Riccardo Ottavi D N

Sagedil S.r.I. - Via Giovanni Falcone, 51/c 02032 Passo Corese - Fara Sabina (RI) Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

SA.G.EDIL s.r.l.	Laboratorio Geotecnico Autorizzato ai sensi del DPR 380/01 e della circolare 7618/2010. Aut.del Ministero delle infrastrutture e dei Trasporti Settore A E B - Decreto N° 131/2020						
laboratorio prove materiali				Azienda Certificata UNI	EN ISO 9001:2015		
Certificato nº 2072-2 Richiedente : Geo 3D srl	1 Pag. 7 di 13 de	el 20/09/2021	Accettazione n°	01454_21 de	03/09/2021		
Provenienza dei Campioni	Realizzazione pista cie	clabile presso Ponte	Cavallotti - Rieti				
	Sondaggio: S1 C Note :	ampione: C1	Profondità di Pre	lievo da m 5,50	am 6,00		

Curve Tensione di Taglio - Spostamento e Deformazione verticale- Spostamento

02032 Passo Corese - Fara Sabina (RI) Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574
SA.G.EDIL s.r.l.		Lab ai s e de	oratorio Geote ensi del DPR 3 ei Trasporti S	ecnico Au 880/01 e o ettore A	utorizzato della circolare 7618/20 E B - Decreto Nº 131	10. Aut.del Mii /2020	nistero de	lle infra	strutture
laboratorio prove materiali						Azienda Certifi	cata UNI E	ISO 9	001:2015
Certificato nº 2072-2	1 Pag. 8 c	li 13 d	del 20/09/	2021	Accettazione n°	01454_21	l del	03/09	9/2021
Richiedente : Geo 3D srl									
Provenienza dei Campioni	Realizzazion	e pista ci	clabile press	o Ponte	e Cavallotti - Rieti				
	Sondaggio: Note :	S1 (Campione:	C1	Profondità di Pre	lievo da m	5,50	am	6,00

Prova di Taglio Diretto (CD)

(UNICEN ISO/TS 17892-10) - Cod prova MOLAB 10636-639

Misurazioni Acquisite

	Provino 1			Provino 2			Provino 3	
Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)
0,00	0,00	0	0,00	0,00	0	0,00	0,00	0
0,18	0,23	21	0,01	0,19	3	0,10	0,26	34
0,40	0,37	29	0,03	0,27	16	0,28	0,41	71
0,59	0,50	33	0,18	0,38	42	0,46	0,51	95
0,80	0,57	32	0,36	0,55	60	0,65	0,62	115
0,99	0,63	33	0,56	0,67	76	0,85	0,69	131
1,19	0,65	36	0,76	0,8	87	1,05	0,73	144
1,38	0,69	41	0,94	0,79	96	1,24	0,77	156
1,58	0,74	46	1,12	0,86	103	1,43	0,79	166
1,78	0,76	49	1,32	0,89	110	1,63	0,81	174
1,98	0,80	53	1,51	0,93	117	1,81	0,82	181
2,17	0,82	56	1,71	0,94	123	2,01	0,85	188
2,37	0,86	59	1,91	0,95	129	2,21	0,87	194
2,57	0,88	62	2,11	0,96	135	2,41	0,91	199
2,77	0,93	64	2,31	0,96	139	2,61	0,95	206
2,97	1,00	66	2,50	0,96	142	2,81	0,99	211
3,18	1,07	68	2,70	0,97	146	3,01	1,01	216
3,38	1,13	69	2,91	0,97	149	3,21	1,02	221
3,59	1,22	70	3,11	0,97	152	3,41	1,03	224
3,78	1,30	71	3,32	0,97	154	3,61	1,03	226
3,98	1,37	72	3,52	0,97	155	3,81	1,03	228
4,19	1,44	73	3,72	0,97	157	4,02	1,03	231
4,38	1,51	73	3,93	0,98	160	4,22	1,03	234
4,59	1,53	73	4,12	0,99	162	4,42	1,03	236
4,79	1,55	73	4,32	1	164	4,62	1,03	237

Le Sperimentatore Riccardo Ottavi-

Direttore di Laboratorio

SA.G.EDIL s.I	r.l.		L a e	aboratorio i sensi del dei Trasp	Geotecnico A DPR 380/01 e orti Settore A	utorizzato della circolare 7618/20 A E B - Decreto N° 13'	010. Aut.del Mi 1/2020	nistero de	elle infra	strutture
laboratorio prove mater	riali						Azienda Certifi	icata UNI E	EN ISO 9	001:2015
Certificato nº	2072-21	Pag. 9	di 13	del 2	0/09/2021	Accettazione n°	01454_2	1 del	03/0	9/2021
Richiedente :	Geo 3D srl									
Provenienza de	ei Campioni	Realizzazion	ne pista	ciclabile	presso Pont	e Cavallotti - Rieti				
		Sondaggio: Note :	S1	Campio	ne: C1	Profondità di Pre	lievo da m	5,50	a m	6,00

Prova di Taglio Diretto (CD)

(UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

Misurazioni Acquisite

	Provino 1			Provino 2			Provino 3	
Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)
5,00	1,55	71	4,53	1,01	165	4,82	1,03	236
5,21	1,55	68	4,74	1,01	166	5,02	1,01	235
5,41	1,55	66	4,94	1,01	164	5,23	0,98	232
5,60	1,55	64	5,14	1,02	163	5,44	0,97	226
5,81	1,60	64	5,34	1,03	162	5,64	0,97	219
6,01	1,62	62	5,54	1,04	161	5,85	0,95	212
3 								1 77 6
							-	
		22						
				 .				
						<u>1011</u>		

Le Sperimentatore Riccardo Ottavi

Direttore di Laboratorio Ing. Lanfranco Zonetti D

Laboratorio Geotecnico Autorizzato ai sensi del DPR 380/01 e della circolare 7618/2010. Aut.del Ministero delle infrastrutture e dei Trasporti Settore A E B - Decreto N° 131/2020

Azienda Certificata UNI EN ISO 9001:2015

Certificato nº	2072-21	Pag. 10	di 13	del 20/09/2	2021	Accettazione n°	01454_2	1 del	03/0	9/2021
Richiedente :	Geo 3D srl									
Provenienza d	ei Campioni	Realizzazion	e pista	ciclabile pres	so Po	nte Cavallotti - Rieti				
		Sondaggio i Note :	S1	Campione	C1	Profondità di Prelie	vo da m	5,50	am	6,00

Risultato delle Prove

Prova di Compressione Edometrica

(UNICEN ISO/TS 17892-5) - Cod prova MOLAB IO625

Data inizio prova	03/09/2	021	Data fine prova		14/09/2021		
Caratteristiche del provino							
Diametro	D	5,034	cm	Peso di volume dei grani	$\gamma_{\rm s}$	25,29	kN/m ³
Altezza Iniziale	H _o	1,999	cm	Grado di saturazione	Sr	104	%
Area	А	19,903	cm ²	Volume di Vuoti	Vv	14,17	cm3
Volume Iniziale	Vo	39,786	cm ³	Porosità iniziale	n _o	0,356	
Contenuto d'acqua iniziale	W _{iniz}	22,4	%	Contenuto d'acqua finale	W _{fin}	20,4	%
Peso di volume	γ'n	19,91	kN/m ³	Indice dei vuoti iniziale	eo	0,553	

Pressione	Tempo	Cedimento cumulativo	Indice dei vuoti	Modulo Edometrico	Coefficiente di compressibilità	Coefficiente di consolidamento	Coefficiente di permeabilità k
P [kPa]	t (ore]	d [mm]	e []	E ¹ [kPa]	m _v [kPa ⁻¹]	C _v [cm ² /sec]	k [m/sec]
0	0	0	0,553	2791	3,58E-04		
49	24	0,351	0,526	5298	1.89E-04	N.D.	N.D.
98	24	0,533	0,512	8521	1.17E-04	N.D.	N.D.
196	24	0,757	0,494	12413	8.06E-05	N.D.	N.D.
392	24	1,061	0,471	19223	5 20E-05	N.D.	N.D.
784	24	1,447	0,441	27818	3.59E-05	N.D.	N.D.
1569	24	1,970	0,400	2/010	0,002.00	N.D.	N.D.
392	24	1,864	0,408				
98	24	1,758	0,416				
49	24	1,713	0,420				
							and the second
	<u></u>		42		1 1		
					[
			-				
					~	\frown	

o Sperimentatore Riecardo Ottavi

Direttore di Laboratorio Ing. Lanfranco Zonetti

Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

SA.G.EDIL s.r.l.	Laboratorio Geotecnico Autorizzato ai sensi del DPR 380/01 e della circolare 7618/2010. Aut.del Ministero delle infrastrutture e dei Trasporti Settore A E B - Decreto N° 131/2020
laboratorio prove materiali	Azienda Certificata UNI EN ISO 9001:2015
Certificato nº 2072-2 Richiedente : Geo 3D srl	1 Pag. 13 di 13 del 20/09/2021 Accettazione nº 01454_21 del 03/09/2021
Provenienza dei Campioni	Realizzazione pista ciclabile presso Ponte Cavallotti - Rieti Sondaggio I S1 Campione r C1 Profondità di Prelievo da m 5,50 a m 6,00 Note :

Prova di Compressione Edometrica

(UNICEN ISO/TS 17892-5) - Cod prova MOLAB 10625

Misurazioni Acquisite

Tempi	0"	6"	15"	30"	1'	2'	4'	8'	16'	30'	60'	120'	240'	480'	1440	2880'	
Pressioni (kPa)							c	edimer	iti in mm	ım							Data(gg/m/a)
49	0,000	0,267	0,271	0,275	0,283	0,290	0,299	0,305	0,310	0,315	0,320	0,325	0,330	0,337	0,351	-	3/9/21
98,1	0,351	0,437	0,444	0,448	0,451	0,455	0,460	0,463	0,468	0,478	0,489	0,498	0,535	0,535	0,533		6/9/21
196,2	0,533	0,664	0,665	0,667	0,671	0,677	0,684	0,691	0,697	0,699	0,717	0,725	0,733	0,741	0,757		7/9/21
392,4	0,757	0,908	0,924	0,931	0,941	0,950	0,960	0,975	0,984	0,997	1,005	1,025	1,029	1,046	1,061		8/9/21
784,8	1,061	1,265	1,271	1,281	1,296	1,309	1,321	1,336	1,351	1,363	1,385	1,411	1,411	1,421	1,447	-	9/9/21
1569	1,447	1,675	1,700	1,716	1,739	1,757	1,778	1,794	1,816	1,832	1,851	1,421	1,891	1,907	1,970		10/9/21
392,4	1,970		-	-	1	-	-	-	-	-			-	-	1,864		13/9/21
98,1	1,864	-	-		-	-	-	-	Ι	-	-) 	Ŧ	1	1,758		14/9/21
49	1,758	-	-	-	-	-	-	-	-	-	-	-	-	-	1,713	-	14/9/21
	-	ц.		-	-	-	-	-	-	-	Ĩ	-	-	-	-		
		-			-					-	-		1			-	
				-			-	-			+			-			
<u></u>	1944		-22-	3 <u>11</u>	2000		5225	-		-			-	-		-	
	-	-	1440	-		-	-	(-		44		
	-		-		9 <u>22</u> 0	-	-										
		-	-	-		-	(112) (112)	122241	- 20	-		-	-		-		
		-	-		-	-		-	-			-			-		

Note:

Lo Sperimentatore Riccardo Ottavi

Direttore di Laboratorio ng. Lanfranco Zonett D

PROVA DI TAGLIO DIRETTO

Sondaggio: Note :

S1

C1 Profondità di Prelievo da m 5,50 6,00 am

INTERPRETAZIONE DELLA PROVA

Campione:

Laboratorio Geotecnico Autorizzato ai sensi del DPR 380/01 e della circolare 7618/2010. Aut.del Ministero delle infrastrutture e dei Trasporti Settore A E B - Decreto N° 131/2020

Azienda Certificata UNI EN ISO 9001:2015

Certificato nº 207	3-21 Pag. 1 di 9	del 20/09/2	2021	Accettazione n° 01454_2	1 del	03/0	9/2021
Richiedente : Geo 3	3D srl						
Provenienza dei Campioni	Realizzazione pist	a ciclabile pres	so Por	te Cavalotti - Rieti			
	Sondaggio: S1 Note :	Campione:	C2	Profondità di Prelievo da m	8,50	a m	9,00

Caratteristiche del Campionamento_Cod prova MOLAB 10622

Data prelievo del campione	31/08/2021	Data di consegna del campione	03/09/2021
Data inizio prova	03/09/2021	Data fine prova	16/09/2021
Tipo di perforazione (dichiarata)		Forma del Campione	Cilindrica
Tipo di campionatore (dichiarata)	Shelby	Diametro della Carota cm	8,5
Contenitore	Fustella in metallo	Lunghezza della Carota cm	37
Diametro esterno del contenitore cm	9,0	Classe di Qualità (dichiarata)	
Lunghezza del Contenitore cm	64,0		

ALTO	PROVE FISICHE	PROVE MECC	DESCRIZIONE DEL CAMPIONE	POCKET (kPa)
5 10 cm 15 20 cm 25 30 cm 35	Vn γn Γ Gran		Sabbia con limo debolmente argillosa di colore grigio olivastro, non plastica in relazione alla frazione argillosa, reazione all'acido cloridrico positiva.	N.D.
40 cm				
45 50 cm				
BASSO	Note: II c	ontenitore	e era chiuso con tappi e nastro adesivo.	
		Bitt	Direttore di Laboratorio Ing Lanfranco Zonetti	

SA.G.EDIL s.r.l.	Laboratorio G ai sensi del DF infrastrutture e	eotecnico Autorizzato PR 380/01 e della circolare 7618/2010. e dei Trasporti Settore AEB - Dec	Aut.del Ministero delle reto N° 131/2020
laboratorio prove materiali		Azie	nda Certificata UNI EN ISO 9001:2015
Certificato n° 2073-21 Richiedente : Geo 3D srl	Pag. 2 di 9 del 20/0	9/2021 Accettazione n° (01454_21 del 03/09/2021
Provenienza dei Campioni	Realizzazione pista ciclabile pro	esso Ponte Cavalotti - Rieti	
	Sondaggio: S1 Campione Note :	e: C2 Profondità di Prelievo	odam 8,50 am 9,00
	Risultato	delle Prove	
	Contenuto d'acqu (UNICEN ISO/TS 17892-	ua allo stato naturale 1) - Cod prova MOLAB IO623	
Data inizio prova		Data fine prova	-
	Determinazione W ₁	Determinazione W ₂	Determinazione W ₃
Peso lordo umido [g]		-
Peso lordo secco [g]	-	
Tara [g]	-	
Umidità relativa W [9	6]	-	-
Umidità Na	urale Media Wn [%]	Dev	viazione Standard
Note :			
	Risultato	delle Prove	
	Massa volumica (UNICEN ISO/TS 17892-2	allo stato naturale) - Cod prova MOLAB IO623	
Data inizio prova	03/09/2021	Data fine prova	03/09/2021
	Metodo usato	: Fustella Volun	netrica Tarata
Peso umido del Terreno [g	150,77	Volume [cm ³]	71,75
	Peso di Volume Naturale γ	n [kN/m ³] 20,63	
Note :			
Losperin	o Ottavi	Direttore d Ing. Lanfra	li Laboratorio anco Zonetti

aboratorio prove materiali									Azieno	la Certificat	a UNI EN IS	0 9001:20
Certificato nº	2073-21	Pag	. 3 di 9	del	20/09/20)21	Accet	tazione	n° 01	454_21	del 03	/09/2021
Richiedente : Geo	3D srl											
Provenienza dei Ca	mpioni R	ealizz	azione pis	ta ciclab	ile press	so Por	nte Cava	lotti - Ri	əti			
	S	ondag ote :	igio: S1	Cam	pione:	C2	Profo	ndità di	Prelievo	dam 8	,50 an	n 9,00
				Risu	Itato d	elle f	Prove			11		
		c	Caratterist	ica di C 30/TS 17	onsiste /892-12)	nza o - Cod	Limiti d prova MO	i Atterb	erg 23			
Data inizio prova LL e	e LP				C	Data fir	ne prova L	LeLP				
ata inizio prova LR			-10		0	Data fir	ne prova L	R				
		Li	mite Liquio	lo			A.	Г	Limite P	astico	Limite	di Ritiro
Misurazioni	1	2	3	4	5		Misura:	zioni	1	2	1	2
N° colpi			-			4 L	Umidit	à %			-	·
Umidità (%)		1907	1.000							_		
	50	° —			1111							
	45											
	47	-										
	8 46	5 +										
	tipiu 45	5										
	5 44											
	42	-										
	41											
	40) +			10)			100			
		-			N° Co	olpi			100			
				Lir	mite di li	quidita	à LL	N.D.	%	Ī		
				Lim	nite di pla	asticita	à LP	N.P.	%	4		
				Indi	ice di pla	asticita	à IP	N.C.	%			
		-	0	1	Limite	di ritiro		N.D.	%	-		
		_	Cor		acqua na	aturale	e vv _n	NC	70	-		
	<u> </u>			Indice	di consis	stenza		N.C.	0/	1		
				int	Indice of	di ritiro			70	1		
				Ra	apporto d	di ritiro	R _r			1		
				In	ndice di a	attivitä	A	N.C.]		
ote :N.C.= Non cal	colabile, N	.D.= n	on determi	inabile, I	N.P.= No	on pla	stico)	22	^^		
								}	<u>A</u>	(\mathcal{A})	. [
			11				1	/			/1 /	

Sagedil S.r.I. - Via Giovanni Falcone, 51/c 02032 Passo Corese - Fara Sabina (RI) Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

SA.G.EDIL s.r.l.	Laboratorio Geotecnico Autorizzato ai sensi del DPR 380/01 e della circolare 7618/2010. Aut.del Ministero delle infrastruttu dei Trasporti Settore A E B - Decreto N° 131/2020	ire e
laboratorio prove materiali	Azienda Certificata UNI EN ISO 9001:	2015
Certificato nº 2073-21 Richiedente : Geo 3D srl	Pag. 4 di 9 del 20/09/2021 Accettazione n° 01454_21 del 03/09/202	21
Provenienza dei Campioni	Realizzazione pista ciclabile presso Ponte Cavalotti - Rieti Sondaggio: S1 Campione: C2 Profondità di Prelievo da m 8,50 a m 9,0 Note :)0

Analisi Granulometrica

(UNICEN ISO/TS 17892-4) - Cod prova MOLAB IO624

	Data inizio	o prova 0	3/09/2021		Data fine	prova 1	4/09/2021
	Peso secco i	niziale vagliatura	[g] 167,99	F F	Peso secco iniziale	sedimentazione	[g] 58,50
Misurazio	one acquisite	vagliatura]		Peso secco	Diametro	Trattenuto
Peso secco	Diametro	Trattenuto			cumulativo [g]	medio [mm]	cumulativo [%]
cumulativo [g]	medio [mm]	cumulativo [%]		1			
				/	0,32	2,000	0,2
					0,69	1,000	0,4
				/	0,80	0,850	0,48
]	/	1,26	0,425	0,75
					13,44	0,250	8,00
					33,43	0,180	19,90
					49,13	0,150	29,25
					79,46	0,106	47,30
					102,29	0,075	60,89
			/		116,07	0,063	69,1
Tempo (sec)	Lettura areometro	Tenperatura (°C)	Correzione	Diametro medio (mm)	Trattenuto cumulativo (%)		

(sec)	areometro	(°C)	Correzione	medio (mm)	cumulativo (%)
30	12	23,2	0,5	0,0608	69,84
60	11	23,2	0,5	0,0492	73,19
360	9,0	23,2	0,5	0,0204	77,38
990	8,0	23,2	0,5	0,0124	80,17
4500	6,0	23,2	0,5	0,0059	85,76
7200	5,0	23,2	0,5	0,0047	88,55
18000	3,8	23,5	0,5	0,0030	92,46
86400	2,5	23	0,5	0,0014	95,53

Note :

Lo Sperimentatore Riccardo Ottavi

Direttore di Laboratorio 0

Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

SA.G.EDI	L s.r.l.		Laboratorio Geotecnico A ai sensi del DPR 380/01 e infrastrutture e dei Trasp	utorizzato della circola orti Settore	re 7618/2010. Aut.del M A E B - Decreto N° 13	inistero delle 1/2020				
laboratorio prov	e materiali				Azienda Certifi	cata UNI EN ISO 9001:2015				
Certificato	on° 2	073-21 Pag. 6 di	9 del 20/09/2021	Accettazi	ione n° 01454_21	del 03/09/2021				
Richieden	te : Geo :	3D srl								
Provenien	za dei Cam	pioni Realizzazione	pista ciclabile presso Pont	e Cavalotti	- Rieti					
		Sondaggio: S Note :	1 Campione: C2	Profondita	à di Prelievo da m	8,50 am 9,00				
			Risultato delle P	rove						
		(UNICEN I	Prova di Taglio Dirett SO/TS 17892-10) - Cod prov	o (CD) a MOLAB IC	D636-639					
Data ini:	zio prova	03/09/2021		[Data fine prova	14/09/2021				
Γ		Caratteris	tiche dei provini sottopo	sti a prova	а					
ſ			Provino	1	2	3				
t t			Altezza [cm]	2,000	2,040	2,070				
Г	Area [cm ²] 36,020 35,990 36,020									
			Volume [cm ³]	72,00	71,35	71,90				
[ertificato n° 2073-21 Pag 6 di 9 del 20/09/2021 Accettazione n° ichiedente : Geo 3D sri rovenienza dei Campioni Realizzazione pista ciclabile presso Ponte Cavalotti - Rieti Sondaggio: S1 Campione: C2 Profondità di Prel Note : Risultato delle Prove Prova di Taglio Diretto (CD) (UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-635 Data inizio prova 03/09/2021 Data 1 Caratteristiche dei provini sottoposti a prova Caratteristiche dei provini sottoposti a prova Provino 1 Altezza [cm] 2,000 22 Area [cm2] 36,020 3 Volume [cm3] 72,00 72 Contenuto d'acqua [%] 24,2 1 Peso di Volume [kN/m3] Indice dei vuoti Grado di saturazione [%] Stata inizio prova 0 Provino 1 Pressione di consolidazione Provino 1 Pressione di consolidazione (kPa) 98 Cedimento (mm) 0,875 1 Fase di taglio Provino 1 Velocità di taglio mm/min 0,0042 Contenuto finale d'acqua % 25,8 2 Tensione di taglio a rottura (%) 0,81 0 Contenuto finale d'acqua % 25,8 2 Tensione di taglio a rottura (%) 0,81 0 Contenuto finale d'acqua % 25,8 2 Tensione di taglio a rottura (%) 0,81 0 Contenuto finale d'acqua % 25,8 2 Tensione di taglio a rottura (%) 0,81 0 Contenuto finale d'acqua % 25,8 2 Tensione di taglio a rottura (%) 0,81 0 Contenuto finale d'acqua % 25,8 2 Tensione di taglio a rottura (%) 0,81 0 Contenuto finale d'acqua % 25,8 2 Tensione di taglio a rottura (%) 0,81 0 Contenuto finale d'acqua % 25,8 2 Tensione di taglio a rottura (%) 0,81 0 Contenuto finale d'acqua % 25,8 2 Tensione di taglio a rottura (%) 0,81 0 Contenuto finale d'acqua % 25,8 2 Tensione di taglio a rottura (%) 0,81 0 Contenuto finale d'acqua % 25,8 2 Tensione di taglio a rottura (%) 0,81 0 Contenuto finale d'acqua % 25,8 2 Tensione di taglio a rottura (%) 0,81 0 Contenuto finale d'acqua % 25,8 2 Tensione di taglio a rottura (%) 0,81 0 Contenuto finale d'acqua % 25,8 2 Tensione di taglio a rottura (%) 0,81 0 Contenuto finale d'acqua % 25,8 2 Tensione di taglio a rottura (%) 0,81 0 Contenuto finale d'acqua % 25,8 2 Tensione di taglio		20,90	20,21						
E			Contenuto d'acqua [%]	24,2	23,0	24,8				
		Peso di	Volume dei grani [kN/m³]							
			Indice dei vuoti		-	7 7				
L			Grado di saturazione [%]							
Г			Fase di Consolidazi	one						
Г			Provino	1	2	3				
F		Pression	e di consolidazione (kPa)	98	196	294				
Ľ			Cedimento (mm)	0,875	1,215	1,459				
Г			Essa di teglia							
F			Provino	1	2	3				
F		,	/elocità di taglio mm/min	0.0042	0.0042	0.0042				
F		Spostamento d	prizontale a rottura (mm)	4.90	3.13	2.33				
F		Deformazion	e Verticale a rottura (%)	0,81	0.52	2.33				
F		Cor	tenuto finale d'acqua %	25,8	24,3	24,0				
	Azienda Certificata UNI EN ISO 9001:201 ficato n° 2073-21 Pag 6 di 9 del 20/09/2021 Accettazione n° 01454_21 del 03/09/2021 edente : [Geo 30 sri enienza dei Campioni Realizzazione pista ciclabile presso Ponte Cavalotti - Rieti Sondaggio: S1 Campione: C2 Profondità di Prellevo da m 8,50 a m 9,00 Note : Risultato delle Prove Prova di Taglio Diretto (CD) (UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639 a inizio prova 03/09/2021 Data fine prova 14/09/2021 Caratteristiche dei provini sottoposti a prova Provino 1 2 3 Altezza [cm] 2,000 2,040 2,070 Area [cm] 36,020 35,990 36,020 Volume [cm] 72,00 71,35 71,90 Peso di Volume [kV/m] 20,80 20,90 20,21 Contenuto d'acqua [%] 24,2 23,0 24,8 Peso di Volume [kV/m] Indice dei vuoti Grado di saturazione (%] Grado di saturazione (%]									
				0						
Note :				//	1	\sim				
E	Å	Biecardo Ottavi	2	for	Direttore di Laborat	orio tti				

Curve Tensione di Taglio - Spostamento e Deformazione verticale- Spostamento

Prova di Taglio Diretto (CD) (UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

Sagedil S.r.l. - Via Giovanni Falcone, 51/c 02032 Passo Corese - Fara Sabina (RI) Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

SA.G.EDIL s.	r.l.	Laboratorio Geotecnico Autorizzato ai sensi del DPR 380/01 e della circolare 7618/2010. Aut.del Ministero delle infras e dei Trasporti Settore A E B - Decreto N° 131/2020											
laboratorio prove mate	riali							Azienda Certifi	cata UNI E	N ISO S	001:2015		
Certificato nº	2073-21	Pag.	8 di 9	del	20/09/20	21	Accettazione n°	01454_21	del	03/0	9/2021		
Richiedente :	Geo 3D srl												
Provenienza de	ei Campioni	Realizzazio	ne pista	a ciclabil	e presso	Ponte	e Cavalotti - Rieti						
		Sondaggio: Note :	S1	Camp	oione:	C2	Profondità di Pre	lievo da m	8,50	a m	9,00		

Prova di Taglio Diretto (CD)

(UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

M	is	u	raz	ion	i A	cq	uis	ite

Provino 1Spostamento orizzontale (mm)Deformazione verticale (%)Tensi di tag (kP0,000,0000,000,0000,130,2015				Provino 2			Provino 3	
Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)
0,00	0,00	0	0,00	0,00	0	0,00	0,00	0
0,13	0,20	15	0,16	0,6	47	0,16	0,89	52
0,34	0,34	33	0,36	0,7	67	0,34	1,19	82
0,56	0,41	37	0,55	0,75	83	0,54	1,39	103
0,76	0,47	38	0,77	0,75	96	0,74	1,54	116
0,93	0,49	41	0,96	0,75	106	0,93	1,61	121
1,13	0,51	43	1,15	0,75	113	1,13	1,65	124
1,33	0,53	44	1,34	0,75	122	1,33	1,67	130
1,54	0,54	45	1,55	0,75	129	1,53	1,71	132
1,73	0,59	46	1,76	0,73	135	1,74	1,73	134
1,91	0,63	47	1,95	0,7	139	1,93	1,75	139
2,10	0,65	50	2,14	0,68	142	2,13	1,77	141
2,30	0,66	53	2,33	0,65	146	2,32	1,78	143
2,50	0,66	57	2,54	0,59	147	2,53	1,81	147
2,70	0,66	61	2,76	0,56	149	2,73	1,89	152
2,90	0,66	64	2,95	0,53	150	2,92	1,95	162
3,10	0,66	67	3,13	0,52	152	3,11	2	170
3,30	0,66	69	3,33	0,47	151	3,30	2,05	176
3,51	0,66	71	3,54	0,4	143	3,52	2,11	183
3,70	0,66	72	3,76	0,4	137	3,72	2,15	188
3,90	0,66	73	3,96	0,4	135	3,91	2,17	192
4,10	0,67	74	4,15	0,4	135	4,10	2,19	196
4,30	0,70	76	4,35	0,4	135	4,29	2,21	198
4,50	0,77	77	4,56	0,4	134	4,51	2,25	201
4,69	0,81	78	4,77	0,4	/134	A 4,71	2,27	204

Lo Sperimentatore Riccardo Ottavi

Direttore di Laboratorio Ing. Lanfranco Zorfetti

SA.G.EDIL s.	r.I.		1	Laborato ai sensi d e dei Tra	rio Geotecnico lel DPR 380/01 sporti Settore	Autorizzato e della circolare 7618/2 A E B - Decreto N° 13	2010. Aut.del Min 1/2020	nistero de	elle infra	strutture
laboratorio prove mate	riali						Azienda Certifi	cata UNI I	EN ISO S	001:2015
Certificato nº	2073-21	Pag.	9 di 9	del	20/09/2021	Accettazione n°	01454_21	del	03/0	9/2021
Richiedente :	Geo 3D srl									
Provenienza de	ei Campioni	Realizzazi	one pista	a ciclabil	e presso Po	nte Cavalotti - Rieti				
		Sondaggio Note :	: S1	Cam	bione: C2	Profondità di Pro	elievo da m	8,50	a m	9,00

Prova di Taglio Diretto (CD)

(UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

Misurazioni Acquisite

	Provino 1			Provino 2			Provino 3	
Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)
4,90	0,81	78	4,97	0,45	133	4,90	2,29	206
5,09	0,81	77	5,15	0,48	133	5,09	2,31	206
5,31	0,81	76	5,36	0,51	133	5,29	2,33	207
5,51	0,81	75	5,57	0,53	133	5,52	2,34	207
5,70	0,81	74	5,78	0,55	132	5,71	2,35	207
5,90	0,82	74	5,97	0,59	132	5,90	2,36	207
100			/ 77					
					1221	-		122
	-							
							-	
				1.00				
				/ **				
	10000	-		2				
	()		গলাল ব					7,7
<u>- 111</u>	1000		142403					(1904)
	5 6		-					
	-				-	<u>22</u>		-
						<u>224</u> 2		
		-						
			22					C

Lo Sperimentator jecardo Ottavy

Direttore di Laboratorio

PROVA DI TAGLIO DIRETTO

Sondaggio: Note : S1

C2

Profondità di Prelievo da m 8,50 a m 9,00

INTERPRETAZIONE DELLA PROVA

Campione:

Laboratorio Geotecnico Autorizzato ai sensi del DPR 380/01 e della circolare 7618/2010. Aut.del Ministero delle infrastrutture e dei Trasporti Settore A E B - Decreto N° 131/2020

Azienda Certificata UNI EN ISO 9001:2015

Certificato nº 207	4-21 Pag. 1 di 9	del 20/09/2	2021	Accettazione n° 01454_2	1 del	03/09	/2021
Richiedente : Geo 3	D srl						
Provenienza dei Campioni	Realizzazione pist	a ciclabile pres	so Pon	te Cavallotti - Rieti Profondità di Prelievo da m	15.00	am	15.50
	Note :	oumpioner			10,00	u	,

Caratteristiche del Campionamento_Cod prova MOLAB IO622

Data prelievo del campione	31/08/2021	Data di consegna del campione	03/09/2021
Data inizio prova	03/09/2021	Data fine prova	16/09/2021
Tipo di perforazione (dichiarata)	() (Forma del Campione	Cilindrica
Tipo di campionatore (dichiarata)	Shelby	Diametro della Carota cm	8,5
Contenitore	Fustella in metallo	Lunghezza della Carota cm	37
Diametro esterno del contenitore cm	9,0	Classe di Qualità (dichiarata)	
Lunghezza del Contenitore cm	64,0		

ALTO	PROVE FISICHE	PROVE MECC	DESCRIZIONE DEL CAMPIONE	POCKET (kPa)
5 10 cm 15 20 cm 25 30 cm	γn γs Gran		Limo con sabbia argilloso di colore grigio olivastro, molle, poco plastico ed inattivo in relazone alla frazione argillosa, reazione all'acido cloridrico positiva.	50 25 50
40 cm	LL e LP			
50 cm 55 BASSO	Note: II c	ontenitore	e era chiuso con tappi e nastro adesivo.	
	6	Losp	Brimentatore Direttore di Laboratorio Ing. Lanfranco Zonetti]

SA.G.EDIL s.r.I.	Laboratorio Geo ai sensi del DPF infrastrutture e	otecnico Autorizzato ₹ 380/01 e della circolare 7618/2010. dei Trasporti Settore AEB - Deci	Aut.del Ministero delle reto N° 131/2020
laboratorio prove materiali	and the second	Azier	nda Certificata UNI EN ISO 9001:2015
Certificato n° 2074-21 Richiedente : Geo 3D srl	Pag. 2 di 9 del 20/09/	2021 Accettazione n°	01454_21 del 03/09/2021
Provenienza dei Campioni	ealizzazione pista ciclabile pres	sso Ponte Cavallotti - Rieti	
So	ondaggio: S1 Campione: ote :	C2 Profondità di Prelievo	odam 15,00 am 15,50
	Risultato	delle Prove	
	Contenuto d'acque (UNICEN ISO/TS 17892-1	a allo stato naturale) - Cod prova MOLAB IO623	
Data inizio prova		Data fine prova	
	Determinazione W ₁	Determinazione W ₂	Determinazione W ₃
Peso lordo umido [g]			
Peso lordo secco [g]			-
Tara [g]	-	-	
Umidità relativa W [%]		k	N RT
Umidità Naur	ale Media Wn [%]] Dev	viazione Standard
Note :			
	Risultato d	delle Prove	
	Massa volumica a (UNICEN ISO/TS 17892-2)	allo stato naturale - Cod prova MOLAB IO623	
Data inizio prova	03/09/2021	Data fine prova	03/09/2021
	Metodo usato:	Fustella Volun	netrica Tarata
Peso umido del Terreno [g]	146,61	Volume [cm ³]	71,98
	Peso di Volume Naturale γn	[kN/m ³] 19,98	
Note :			
Sagedil S.r.I Via Giovanni Falcone, s 02032 Passo Corese -	51/c Fara Sabina (RI)	Direttore d	li Laboratorio anco Zonett

SA.G.EDIL s.r.l.				ai sensi e dei Ti	del DPR 380/01 rasporti Settore	A E B - [colare 7618/ Decreto Nº 1	/2010. A 31/2020	ut.del Minis	tero del	le infra	struttu
boratorio prove materiali								Azier	nda Certificat	a UNI E	N ISO 9	001:20
Certificato nº	2074-21	Pa	g. 3 di 9	del	20/09/2021	Accet	ttazione n°	0	1454_21	del	03/09	9/2021
Richiedente : Ge	eo 3D srl											
Provenienza dei C	ampioni	Realizz	azione pis	ta ciclal	oile presso Po	nte Cava	llotti - Rie	ti				
		Sondag Note :	ggio: S1	Can	npione: C2	Profo	ondità di P	relievo	dam 15	i,00	a m	15,50
				Risu	iltato delle	Prove						
			Caratterist	tica di (SO/TS 1	Consistenza c 7892-12) - Cod	Limiti d prova MC	LAB 1062	rg 3				
ata inizio prova LL	. e LP		•		Data fi	ne prova l	LL e LP				-	
ata inizio prova LF	2				Data fi	ne prova l	R					
		L	imite Liqui	do			L	imite F	Plastico	Lin	nite di	Ritiro
Misurazioni	1	2	3	4	5	Misura	zioni	1	2	1		2
N° colpi	15	20	27			Umidit	à% 3	30,6	30,8	10,	43	9,31
Umidità (%)	50,3	47,0	45,1									
		52		1 1 1	1111	1						
		51										
		50					_					
		49										
	(%)	48					_					
	dità	47										
	j <u>a</u>	46										
		45										
		44 -										
		43					_	_				
		42 🗕										
		1			10 N° Colpi			100				
				Li	mite di liquidit	àLL	45	%	1			
		20.01	V	Lin	nite di plasticit	à LP	31	%	1			
				Ind	ice di plasticiti	àIP	14	%	1			
					Limite di ritire	LR	10	%	1			
			Cor	ntenuto	acqua natural	e Wn	29,4	%	1			
				Indice	di consistenza	a IC	1,09		1			
				In	dice di liquidita	i IL	<0	%	1			
					Indice di ritiro	D Ir	1,91		1			
				Ra	apporto di ritiro	R _r	7,66	and the second	1			
				h	ndice di attività	A	0,68		1			
te :N.C.= Non ca	lcolabile,	N.D.= n	on determi	inabile,	N.P.= Non pla	stico	2					-
						/	$ \Lambda$	۵	/			
	-	\sim	_1			V		V	11			
	Lo Sperin	nentator	•)/			L	Diretto	ore dif	aboratorio)		
	Riocardo	o Ottavi	-0	-		A) I	I Ing.	Lanfran	Zonetti	<		
						1 VVI	00100	11	1VVV			

Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

SA.G.EDIL s.r.l.	Laboratorio Geotecnico Autorizzato ai sensi del DPR 380/01 e della circolare 7618/2010. Aut.del Ministero delle infrastrutture e dei Trasporti Settore A E B - Decreto N° 131/2020
laboratorio prove materiali	Azienda Certificata UNI EN ISO 9001:2015
Certificato n° 2074-21 Richiedente : Geo 3D srl	Pag. 4 di 9 del 20/09/2021 Accettazione nº 01454_21 del 03/09/2021
Provenienza dei Campioni	Realizzazione pista ciclabile presso Ponte Cavallotti - Rieti Sondaggio: S1 Campione: C2 Profondità di Prelievo da m 15,00 a m 15,50 Note :

Analisi Granulometrica

(UNICEN ISO/TS 17892-4) - Cod prova MOLAB IO624

	Data inizio	prova 0:	3/09/2021		Data fine	prova 1	4/09/2021
	Peso secco i	niziale vagliatura	[g] 182,31	P	eso secco iniziale	sedimentazione	e [g] 61,20
Misurazio Peso secco	one acquisite Diametro	vagliatura Trattenuto			Peso secco cumulativo [g]	Diametro medio [mm]	Trattenuto cumulativo [%]
cumulativo [g]	medio [mm]	cumulativo [%]		1			
				/	0,45	2,000	0,2
				/	3,10	1,000	1,7
				/	3,31	0,850	1,81
				/	4,38	0,425	2,40
			/		5,57	0,250	3,06
					9,29	0,180	5,10
	10		/		20,32	0,150	11,14
					38,40	0,106	21,06
			/		52,04	0,075	28,55
			/		58,39	0,063	32,0

Tempo (sec)	Lettura areometro	Tenperatura (°C)	Correzione	Diametro medio (mm)	Trattenuto cumulativo (%)
30	26	24,7	0,5	0,0573	33,80
60	24	24,7	0,5	0,0414	37,80
360	22,0	24,7	0,5	0,0173	43,14
990	20,0	24,7	0,5	0,0107	48,48
4500	15,0	24,7	0,5	0,0053	61,83
7200	13,0	24,7	0,5	0,0043	67,17
18000	10,0	24,9	0,5	0,0028	75,44
86400	8,0	24,2	0,5	0,0013	81,05

Note :

Lo Sperimentatore Riccardo Ottavi

Direttore di Laboratorio

boratorio p	rove materia	li									_					Az	iend	a Cer	tificat	a UNI E	EN ISC	9001::
ertifica	to nº	20	74-21		Pa	g.	5 di 9	,	del	20/0	09/2	202	1 Acce	tazio	one	n°	(145	4_21	de	03	/09/20
lichiede	ente :	Geo 3D) srl											_								
rovenie	enza dei	Campio	oni	Real	izza	zior	ne pis	sta ci	clabil	e pr	ess	so F	Ponte Caval	lotti	Rie	eti						
				Sond Note	lago :	gio n	I.	S1	Carr	pio	ne	n.	C2 Profo	ndita	a di l	Preli	evo	da n	n	15,00	am	15,
								Ris	sulta	to	de	lle	Prove	_								
					(U	INIC	EN IS	CI SO/TS	urva 6 1789	gra 92-4	nul) - (om Cod	prova MOLA	BIC	630							
	PASS	ANTE	AI SE	TACCI		N ₁	0 (2 m	m)	10	0	%		N ₄₀ (0,425 mm)	g	8	%	N ₂	₃₀ (0,0	63 mm	68	%	
	GHIAI	٩	()	%	Ι	SAE	BIA	3	32	%	0	LIMO		47	%	A	RGI	LLA	21	%	
						(Cur	va	G	a	าม	llo	ometric	а								
° ∏					-	-			~						TT			1111				100
10		_			+	_											-				_	90
0					-					1											-	80
30		_			_						X				1			_				70
0									-												_	60
o 📙		-											1									50
o 📙														X								40
o 🛄																						30
o 📖																	-					20
																						10
																						10
.00,000)	10,0	000			1,00	0		(),10	0		0,01	0			0,0	001			0,00	0
DESCI				METR		• 1 ii			etro (ard	gran		mm)	0						20		
D60 (n	nm) = 0 ,	0295	IULU	D1	0 (n	nm)	= 0,	0002		arg	mot	50	Coeficie	ente	di U	njfor	mità	cy	=/14	47,50		
		Lo	Sperin	nentat	ore								10	/	Dire	tore	di l	-200	ratø	io		
_	\square	14	Priccard	o Ottavi									10	U	M	ig. La				A		

487180 - Cod. Fisc. e Partiva IVA 0

SA.G.EDIL s	.r.l.		Laboratorio Geotecnico A ai sensi del DPR 380/01 e infrastrutture e dei Traspo	utorizzato della circola orti Settore	re 7618/2010. Aut.del M A E B - Decreto N° 13	linistero delle 1/2020	
laboratorio prove ma	eriali				Azienda Certif	icata UNI EN ISO 900)1:2015
Certificato nº	2074-	-21 Pag. 6 di 9	del 20/09/2021	Accettazi	one n° 01454_2	del 03/09/2	2021
Richiedente :	Geo 3D si	h					
Provenienza o	dei Campion	Realizzazione p	ista ciclabile presso Ponte	e Cavallotti	- Rieti		
		Sondaggio: S 1 Note :	Campione: C2	Profondita	à di Prelievo da m	15,00 am 19	5,50
			Risultato delle Pi	rove			
		(UNICEN IS	Prova di Taglio Diretto GO/TS 17892-10) - Cod prov	o (CD) a MOLAB IC	0636-639		
Data inizio	prova	03/09/2021		[Data fine prova	14/09/2021	1
		Caratterist	iche dei provini sottopo	sti a prova	a		
			Provino	1	2	3	
			Altezza [cm]	2,000	2,040	2,070	
			Area [cm ²]	36,020	35,990	36,020	
			Volume [cm ³]	72,00	71,35	71,90	
			Peso di Volume [kN/m³]	20,80	20,90	20,21	
			Contenuto d'acqua [%]	29,2	28,7	30,3	
		Peso di V	olume dei grani [kN/m ³]		2000		
-			Indice dei vuoti				
L		(Frado di saturazione [%]				
			Fase di Consolidazi	one			
			Provino	1	2	3	
		Pressione	di consolidazione (kPa)	98	196	294	
			Cedimento (mm)	1,845	2,842	3,472	
			Fase di taglio				
			Provino	1	2	3	
		V	elocità di taglio mm/min	0,0042	0,0042	0,0042	
		Spostamento or	izontale a rottura (mm)	4,40	4,80	4,03	
		Deformazione	Verticale a rottura (%)	3,93	3,65	4,03	
		Cont	enuto finale d'acqua %	31,7	34,6	33,6	
		Tensione	e di taglio a rottura(mm)	52	120	176	
Note :				-A			
		2	ter many dia pada pada pada pada pada pada pada	_//	AA		
E	Lo Spe	ardo Ottavi		len	Direttore di Laborat		

SA.G.EDIL s.	r.l.		La ai e	aboratorio Geo sensi del DPR dei Trasporti S	tecnico A 380/01 e o Settore A	utorizzato della circolare 7618/2 E B - Decreto N° 13 [.]	010. Aut.del Minister 1/2020	o delle infr	astrutture
laboratorio prove mate	nali						Azienda Certificata U	INI EN ISO	9001:2015
Certificato nº	2074-21	Pag. 7	di 9	del 20/09/	2021	Accettazione n°	01454_21	del 03/0	9/2021
Provenienza de	ei Campioni	Realizzazion	e pista o	ciclabile pres	so Ponte	e Cavallotti - Rieti]
		Sondaggio: Note :	S1	Campione:	C2	Profondità di Pre	lievo da m 15,0	0 am	15,50

Curve Tensione di Taglio - Spostamento e Deformazione verticale- Spostamento

Prova di Taglio Diretto (CD) (UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

SA.G.EDIL s.	r.I.			Laborator ai sensi d e dei Tra:	io Geotecni el DPR 380/ sporti Setto	co Aut 01 e de ore A E	torizzato ella circolare 7618/20 E B - Decreto N° 131/	10. Aut.del Mi /2020	inistero del	lle infra	astrutture
laboratorio prove mate	riali							Azienda Certif	icata UNI E	N ISO	9001:2015
Certificato nº	2074-21	Pag.	8 di 9	del	20/09/202	1	Accettazione n°	01454_2	1 del	03/0	9/2021
Richiedente :	Geo 3D srl										
Provenienza de	ei Campioni	Realizzazio	one pista	a ciclabil	e presso F	Ponte	Cavallotti - Rieti				
		Sondaggio Note :	: S1	Camp	oione: C	2	Profondità di Prel	ievo da m	15,00	a m	15,50

Prova di Taglio Diretto (CD)

(UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

Misurazioni Acquisite

	Provino 1			Provino 2			Provino 3	
Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)
0,00	0,00	0	0,00	0,00	0	0,00	0,00	0
0,17	2,05	30	0,01	0,98	-6	0,16	1,4	46
0,37	2,32	35	0,06	1,13	17	0,34	1,63	69
0,58	2,55	31	0,23	1,4	41	0,53	1,83	83
0,78	2,76	34	0,42	1,69	54	0,72	2,05	96
0,98	2,83	32	0,62	1,94	64	0,92	2,22	105
1,17	2,90	36	0,81	2,12	71	1,12	2,4	113
1,37	2,95	36	1,01	2,31	77	1,32	2,55	120
1,58	3,00	34	1,20	2,41	81	1,51	2,7	126
1,78	3,02	34	1,38	2,5	84	1,71	2,83	132
1,98	3,05	32	1,58	2,61	89	1,89	2,94	136
2,18	3,07	40	1,77	2,75	93	2,09	3,05	141
2,38	3,18	44	1,98	2,85	97	2,29	3,17	145
2,58	3,28	45	2,18	2,96	100	2,50	3,28	149
2,78	3,36	46	2,38	3,05	103	2,70	3,35	154
2,99	3,44	48	2,58	3,12	106	2,90	3,46	157
3,19	3,51	49	2,77	3,19	108	3,10	3,55	160
3,39	3,59	50	2,98	3,26	110	3,30	3,6	162
3,60	3,67	51	3,18	3,31	111	3,50	3,64	164
3,80	3,74	52	3,39	3,38	113	3,70	3,7	166
4,00	3,79	52	3,58	3,43	115	3,90	3,74	167
4,20	3,87	51	3,79	3,49	117	4,11	3,81	169
4,40	3,93	52	3,99	3,53	118	4,30	3,85	171
4,61	3,98	52	4,18	3,56	119	4,50	3,89	172
4.82	4 01	51	4.39	3 59	119/	4 70	3.03	173

Lo Sperimentatore Riceardo Ottavi

Direttore di Laboratorio Ing. Lanfranco Zonetti 0 00

SA.G.EDIL s.I	r.I.		l a	aborato ai sensi d dei Tra	rio Geotecr el DPR 380 sporti Sett	nico Au //01 e d ore A	utorizzato della circolare 7618/20 E B - Decreto N° 131	010. Aut.del M I/2020	inistero de	elle infra	strutture
laboratorio prove mate	riali							Azienda Certi	ficata UNI E	EN ISO	9001:2015
Certificato nº	2074-21	Pag.	di 9	del	20/09/20	21	Accettazione n°	01454_2	1 del	03/0	9/2021
Richiedente :	Geo 3D srl										
Provenienza de	ei Campioni	Realizzazio	ne pista	ciclabil	e presso	Ponte	e Cavallotti - Rieti				
		Sondaggio: Note :	S1	Cam	oione:	C2	Profondità di Pre	lievo da m	15,00	a m	15,50

Prova di Taglio Diretto (CD)

(UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

Misurazioni Acquisite

	Provino 1			Provino 2			Provino 3	
Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)
5,02	4,05	51	4,59	3,62	120	4,90	3,96	174
5,22	4,10	51	4,80	3,65	120	5,10	3,98	174
5,42	4,15	52	5,00	3,67	120	5,31	4	175
5,62	4,19	51	5,20	3,69	120	5,51	4,01	175
5,82	4,22	51	5,40	3,71	120	5,72	4,03	176
6,03	4,25	51	5,61	3,71	119	5,91	4,04	176
	- 1					(144)		
	- 1					(
	- 1		(50
	- 1							
÷-								
								-
	-			-	(***)(
			-					
		0. 0						
) 						7.0
			-					
							-	11555
								1. <u>-22</u> 9
		-						(1 212))

Lo Sperimentatore Riceardo Ottavi

Direttore di Laboratorio ng. Lanfranco Zonetti 20

PROVA DI TAGLIO DIRETTO

Sondaggio: Note : **S1**

Profondità di Prelievo da m 15,00 a m 15,50

INTERPRETAZIONE DELLA PROVA

Campione:

C2

Laboratorio Geotecnico Autorizzato ai sensi del DPR 380/01 e della circolare 7618/2010. Aut.del Ministero delle infrastrutture e dei Trasporti Settore A E B - Decreto N° 131/2020

Azienda Certificata UNI EN ISO 9001:2015

Certificato nº 207	75-21 Pag. 1 di 9	del 20/09/2	2021	Accettazione n° 01454_2	1 del	03/0	9/2021
Richiedente : Geo	3D srl						
Provenienza dei Campioni	Realizzazione pist	a ciclabile pres	so Pon	te Cavallotti - Rieti			
	Sondaggio: S2 Note :	Campione:	C1	Profondità di Prelievo da m	3,00	a m	3,50

Caratteristiche del Campionamento_Cod prova MOLAB IO622

Data prelievo del campione	31/08/2021	Data di consegna del campione	03/09/2021
Data inizio prova	03/09/2021	Data fine prova	16/09/2021
Tipo di perforazione (dichiarata)		Forma del Campione	Cilindrica
Tipo di campionatore (dichiarata)	Shelby	Diametro della Carota cm	8,5
Contenitore	Fustella in metallo	Lunghezza della Carota cm	42
Diametro esterno del contenitore cm	9,0	Classe di Qualità (dichiarata)	1.77.1
Lunghezza del Contenitore cm	64,0		

ALTO	PROVE FISICHE	PROVE MECC	DESCRIZIONE DEL CAMPIONE	POCKET (kPa)
5 10 cm 15 20 cm 25 30 cm 35 40 cm 45	Wn γn γs Gran LL e LP L.R.		Limo con sabbia argilloso di colore grigio olivastro, molto consistente, plastico e normalmente attivo in relazione alla frazione argillosa, reazione all'acido cloridrico positiva.	250
50 cm 55 BASSO	Note: II c	Lo Sp	era chiuso con tappi e nastro adesivo. erimentatore pardo Ottavi Cardo Ottavi	

SA.G.EDIL s.r.l.	Laboratorio Geo ai sensi del DPF infrastrutture e	otecnico Autorizzato ₹ 380/01 e della circolare 7618/2010 dei Trasporti Settore AEB - Deo	. Aut.del Ministero delle creto N° 131/2020
laboratorio prove materiali		Azie	enda Certificata UNI EN ISO 9001:2015
Certificato n° 2075-21 Richiedente : Geo 3D srl	Pag. 2 di 9 del 20/09/	2021 Accettazione n°	01454_21 del 03/09/2021
Provenienza dei Campioni	Realizzazione pista ciclabile pres	sso Ponte Cavallotti - Rieti	
S	Sondaggio: S2 Campione: Note :	C1 Profondità di Preliev	odam 3,00 am 3,50
	Risultato	delle Prove	
	Contenuto d'acqua (UNICEN ISO/TS 17892-1	a allo stato naturale) - Cod prova MOLAB IO623	
Data inizio prova		Data fine prova	
	Determinazione W ₁	Determinazione W ₂	Determinazione W ₃
Peso lordo umido [g	1]		
Peso lordo secco [g	0		
	J	-	
		-	
Umidità Nau	urale Media Wn [%]	De	viazione Standard
Note :			
	Risultato d	delle Prove	
	Massa volumica (UNICEN ISO/TS 17892-2)	allo stato naturale - Cod prova MOLAB IO623	
Data inizio prova	03/09/2021	Data fine prova	03/09/2021
	Metodo usato:	Fustella Volu	metrica Tarata
Peso umido del Terreno [g	149,83	Volume [cm ³]	71,75
	Peso di Volume Naturale γn	[kN/m ³] 20,46	
Note :			
Riccardo Riccardo Sagedil S.r.I Via Giovanni Falcone	ottavi 51/c	Direttore Ing. Lant	di Laboratofio irando Zonetti

02032 Passo Corese - Fara Sabina (RI) Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

Azierda Certificata UNI EN ISO 3001 Certificato n° 2075-21 Pag. 3 di 9 del 20/09/2021 Accettazione n° 01454_21 del 03/09/20 Richiedente : Geo 3D srl Realizzazione pista ciclabile presso Ponte Cavallotti - Rieti Sondaggio: S2 Campione: C1 Profondità di Prelievo da m 3,00 a m a, Note : Risultato delle Prove Caratteristica di Consistenza o Limiti di Atterberg (UNICEN ISOTS 17892-12) - Cod prova MOLAB IO623 Data inzio prova LR Data fine prova LL e LP ~ Data inzio prova LR Data fine prova LL e LP ~ ~ Data inzio prova LR Data fine prova LL e LP ~ ~ Data inzio prova LR Data fine prova LL e LP ~ ~ Umidità (%) 53.5 51.9 49.9 ~ ~ ~ ~ 12.2 12.48 11. Umidità LL 51 % 55 54 ~ ~ ~ ~ 12.48 11. 12.48 11. 12.48 11. 12.48 11. 12.48 11. 12.48 11.<	SA.G.EDIL s.r.l.				Laborator ai sensi d e dei Tra	rio Geoteo lel DPR 38 sporti Sel	cnico Au 30/01 e d ttore A l	torizzato ella circol E B - Dec	are 761 reto N°	8/2010. A 131/2020	ut.del Minis	tero delle	infrastr	uttur
Earning of the second										Azier	nda Certifica	ta UNI EN	ISO 900	1:20
Richiedente : Geo 3D sri Provenienza del Campioni Realizzazione pista ciclabile presso Ponte Cavallotti - Rieti Sondaggio: S2 Caratteristica di Consistenza o Limiti di Atterberg (UNICEN ISO/TS 17892-12) - Cod prova MOLAB IO623 Data inci prova LL e LP Data inzio prova LR Caratteristica di Consistenza o Limiti di Atterberg (UNICEN ISO/TS 17892-12) - Cod prova MOLAB IO623 Misurazioni 1 2 3 4 5 N° colpi 16 22 28 Umidità % 31,3 29,3 Limite di Rit 1 2 Umidità % 31,3 29,3 56 55 54 54 55 54 54 55 54 54 55 54 54 55 54 56 55 54 56 55 54 56 56 56 57 56 57 57 58 50 50 50 50 50 50 51 50 51 50 51 50 51 50 51 50 51 50 51 50 51 50 51 50 51 51 50 51 50 51 51 50 51 50 51 51 50 51 51 50 51 51 51 51 50 51 51 51 51 51 51 51 51 51 51 51 51 51	Certificato nº	2075-21	l Pag	. 3 di 9	dei	20/09/202	21	Accetta	zione i	n° 0	1454_21	del	03/09/2	021
Provenlenza del Campioni Realizzazione pista ciclabile presso Ponte Cavallotti - Rieti Sondaggio: S2 Campione: C1 Profondità di Prelievo da m 3,00 a m 3, Note : Risultato delle Prove Caratteristica di Consistenza o Limiti di Atterberg (UNICEN ISO/TS 17892-12)- Cod prova MOLAB IO623 Data Inizio prova LL e LP - Data Inizio prova LR Data Inizio prova LR Data Inizio prova L e LP - Data Inizio prova L e L - Limite di Iquidità L - Data Inizio prova L e L - L - Data Inizio e I Inizio I - Reporto di Itiuo I - Reporto di Itiuo I - Indice di Inizio I - I - Data Inizio I - Data Ini	Richiedente : Ge	eo 3D srl												
Sondaggio: S2 Campione: C1 Profondità di Prelievo da m 3,00 a m 3, 0 Risultato delle Prove Caratteristica di Consistenza o Limiti di Atterberg (UNICEN ISO/TS 17892-12) - Code prova MOLAB IO623 Data inizio prova LL e LP Data inizio prova LL e LP Data inizio prova LR Limite Liquido Misurazioni 1 2 3 4 5 M* colpi 16 22 28 Condità % 31,3 29,3 Limite di Riu Unidità (%) 53,5 51,9 49,9 Vindità % 31,3 29,3 Limite di Riu 10 100 N° colpi Unidità (%) 53,5 51,9 49,9 -	Provenienza dei C	ampioni	Realizza	azione pis	sta ciclabi	le presso	o Ponte	Cavallo	tti - Ri	ieti				
Sorticaggio: S2 Campione: C1 Problematic Presevoid a million 3,00 a millio			Canadana		0		~	Destana		Deelieure		00		50
Risultato delle Prove Caratteristica di Consistenza o Limiti di Atterberg (UNICEN ISOITS 17892-12) - Cod prova MOLAB IO623 Data inizio prova LL e LP Data ine prova LL e LP Limite Liquido Limite Plastico Misurazioni 1 2 3 4 5 M° colpi 16 22 28 Umidità % 31.3 29.3 Limite di Riti Umidità (%) 53.5 51.9 49.9 1.2 1.4 1.2 Umidità (%) 53.5 51.9 49.9 1.2 1.4.8 11. Umidità (%) 53.5 51.9 49.9 1.2 1.2 12.48 11. Umidità (%) 53.5 51.9 49.9 -			Note :	gio: 52	Camp	bione:	61	Protono		Prelievo	uam 3	, 00 a	am 3	,50
Caratteristica di Consistenza o Limiti di Atterberg (UNICEN ISO/TS 17892-12) - Cod prova MOLAB IO623 Data inizio prova LL e LP					Risul	tato de	elle Pr	ove						
Data inizio prova LL e LP - Data fine prova LL e LP - Data inizio prova LR Data fine prova LR Data fine prova LR Limite Plastico 1 2 3 4 5 N° colpi 16 22 28 - - - Unidità % 31,3 29,3 1 1 2 1,2,48 11, 2 12,48 11, 1 2 1,2,48 11, 1 2 1,2,48 11, 1 2 1,2,48 11, 1 2 1,2,48 1,1 1 1 2 1,2,48 1,1 1 1 1 1 1 1,2,48 1,1 1 1 1,2,48 1,1 1 1 1,2,48 1,1 1,0 1,00 1			C	aratteris	tica di Co SO/TS 178	onsisten 892-12) -	cod pro	imiti di A ova MOLA	Atterb AB 106	erg 23				
Data fine prova LR Limite Liquido Limite Plastico Limite Plastico Misurazioni 1 2 3 4 5 N° colpi 16 22 28 Umidità (%) 53,5 51,9 49,9 Umidità % 31,3 29,3 12,48 11, Unidità (%) 53,5 51,9 49,9 12,48 11, Unidità (%) 53,5 51,9 49,9 12,48 11, Unidità (%) 53,5 51,9 49,9	Data inizio prova LL	. e LP				Da	ata fine	prova LL	e LP				-	
Limite Liquido Limite Plastico Limite di Rit Misurazioni 1 2 3 4 5 N° colpi 16 22 28 Umidità (%) 53,5 51,9 49,9 56 55 54 1.48 11. 9 52 1.2,48 11. 9 1.2,48 11. <t< td=""><td>Data inizio prova LF</td><td>२</td><td></td><td></td><td></td><td>D</td><td>ata fine</td><td>prova LR</td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Data inizio prova LF	२				D	ata fine	prova LR						
Misurazioni 1 2 3 4 5 N° colpi 16 22 28 - Umidità (%) 53,5 51,9 49,9 - Umidità (%) 53,5 51,9 49,9 - Statistica (%) 52,5 51,9 49,9 - - Statistica (%) 51,9 49,9 - - 100 N° Colpi 100 N° Colpi 100 N° Colpi Limite di plasticità LP 30,% % 21,0 % Limite di ritrio LR 12,9% 21,0 % 10 100 Indice di consistenza IC			Li	mite Liqui	do		7		Г	Limite F	Plastico	Limi	te di Ri	tiro
N° colpi 16 22 28 Umidità % 31,3 29,3 12,48 11, Umidità (%) 53,5 51,9 49,9 12,48 11, Umidità (%) 53,5 51,9 49,9	Misurazioni	1	2	3	4	5		Visurazio	oni	1	2	1		2
Umidità (%) 53,5 51,9 49,9 56 54 97 53 1 10 100 1 10 100 N* Colpi 100 Limite di liquidità LL 51 49 48 1 1 10 N* Colpi 100 N* Colpi 100 N* Colpi 100 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 100 N* Colpi 100 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 1 10 <tr< td=""><td>N° colpi</td><td>16</td><td>22</td><td>28</td><td></td><td></td><td></td><td>Umidità ⁽</td><td>%</td><td>31,3</td><td>29,3</td><td>12,4</td><td>8 11</td><td>,28</td></tr<>	N° colpi	16	22	28				Umidità ⁽	%	31,3	29,3	12,4	8 11	,28
56 53 54 55 54 55 54 55 51 50 48 1 10 N* Colpi Limite di liquidità LL 51 50 48 1 10 N* Colpi	Umidità (%)	53,5	51,9	49,9			1 -							_
55 54 92 53 54 53 52 50 49 48 1 10 N* Colpi Imite di liquidità LL 51 % Limite di liquidità LP 30 % Indice di plasticità IP 21 % Limite di ritiro LR 12 % Indice di consistenza IC 1.45 Indice di induidità LL <0			56						1 1					
Signature			55											
34 34 35 35 50 30 49 1 48 1 1 10 N* Colpi Limite di liquidità LL 51 K 1 Limite di plasticità LP 30 Indice di plasticità IP 21 K 1 Limite di ritiro LR 12 Contenuto acqua naturale Wn 21.0 % Indice di liquidità IL 40 Nnice di ritiro I, 1,45 Indice di ritiro I, 1,87 Rapporto di ritiro R, 5,61 Indice di attività A 1,22 Ote :N.C.= Non calcolabile, N.D.= non determinabile, N.P.= Non plastico			50											
Image: Signed state of the system Image: Signed state Image: Sig			54											
Image 52 51 50 49 48 1 10 100 N° Colpi Limite di liquidità LL 10 51 % 100 N° Colpi Limite di plasticità LP 100 30 % 100 Limite di ritiro LR 12 21 % Contenuto acqua naturale Wn 21,0 % Indice di consistenza IC 100 1,45 100 Indice di ritiro I, 100 1,87 100 Rapporto di ritiro R, 100 1,22 Iote :N.C.= Non calcolabile, N.D.= non determinabile, N.P.= Non plastico M		(%)	53				1							
Š 51 5 50 49 49 10 10 100 N° Colpi Limite di liquidità 51 Limite di liquidità D10 N° Colpi Limite di liquidità D10 Limite di liquidità D10 Limite di liquidità D100 N° Colpi Dindice di plasticità Indice di plasticità P Limite di ritiro Dindice di consistenza Indice di liquidità L Indice di ritiro Dindice di ritiro Indice di ritiro Dindice di attività Indice di attività Indice di attività Indice di attività Indice di attività		dità	52											
50 49 49 1 10 1 10 100 N° Colpi 100 Indice di plasticità LP 30 10 Limite di ritiro LR 12 10 Contenuto acqua naturale Wn 21,0 10 Indice di iguidità IL <0		Cmi	51											
49 1 10 100 N° Colpi N° Colpi Limite di liquidità LL 51 % Limite di plasticità LP 30 % Indice di plasticità IP 21 % Limite di ritiro LR 12 % Contenuto acqua naturale Wn 21,0 % Indice di consistenza IC 1,45 Indice di liquidità IL <0			50											
48 10 100 N° Colpi N° Colpi Limite di liquidità LL 51 % Limite di plasticità LP 30 % Indice di plasticità IP 21 % Contenuto acqua naturale Wn 21,0 % Indice di consistenza IC 1,45 Indice di ritiro I, 1,87 Rapporto di ritiro R 5,61 Indice di attività A 1,22			49	_										
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			40											
N° Colpi Limite di liquidità LL 51 % Limite di plasticità LP 30 % Indice di plasticità IP 21 % Limite di ritiro LR 12 % Contenuto acqua naturale Wn 21,0 % Indice di consistenza IC 1,45 Indice di liquidità IL <0			48 + 1			10			1 1 1	100				
Limite di liquidità LL 51 % Limite di plasticità LP 30 % Indice di plasticità IP 21 % Limite di ritiro LR 12 % Contenuto acqua naturale Wn 21,0 % Indice di consistenza IC 1,45 Indice di liquidità IL <0						N° Col	lpi							
Limite di plasticità LP 30 % Indice di plasticità IP 21 % Limite di ritiro LR 12 % Contenuto acqua naturale Wn 21,0 % Indice di consistenza IC 1,45 Indice di liquidità IL <0					Lin	nite di liq	quidità		51	%	ี่ โ			
Indice di plasticità IP 21 % Limite di ritiro LR 12 % Contenuto acqua naturale Wn 21,0 % Indice di consistenza IC 1,45 Indice di liquidità IL <0					Limi	ite di pla	sticità	LP	30	%				
Limite di ritiro LR 12 % Contenuto acqua naturale Wn 21,0 % Indice di consistenza IC 1,45 Indice di liquidità IL <0					India	ce di pla	sticità	IP	21	%				
Contenuto acqua naturale Wn 21,0 % Indice di consistenza IC 1,45 Indice di liquidità IL <0						Limite d	li ritiro	LR	12	%	7			
Indice di consistenza IC 1,45 Indice di liquidità IL <0				Co	ntenuto a	cqua na	turale	Wn	21,0	%	1			
Indice di liquidità IL <0					Indice of	di consis	tenza	IC	1,45		1			
Indice di ritiro Ir 1,87 Rapporto di ritiro Rr 5,61 Indice di attività A 1,22					Ind	ice di lia	uidità	IL	<0	%	1			
Rapporto di ritiro Rr 5,61 Indice di attività A 1,22 ote :N.C.= Non calcolabile, N.D.= non determinabile, N.P.= Non plastico () ()						Indice d	i ritiro	1,	1,87		1			
Indice di attività A 1,22					Ra	pporto di	i ritiro	Rr	5,61		1			
ote :N.C.= Non calcolabile, N.D.= non determinabile, N.P.= Non plastico				- 1 - E - Le 201	In	dice di a	ttività	A	1,22		1			
	ote :N.C.= Non ca	alcolabile,	, N.D.= n	on determ	inabile, N	I.P.= No	n plasti	co /)	1		\bigcap_{n}		
				7				-/-	/			/11)	
Lo Sperimentatore		Lo Speri	mentatore	\rightarrow				10	Dire	ttore di	Laborator	io //	•	
Plccardo Ottavi	/	Riccard	do Ottavi	1				Ini	1 N	Lanfrar	nco Zonetti	XAL	-	
	-6-	~ (/					101	ju	VY	2 17	aft		

02032 Passo Corese - Fara Sabina (RI) Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

SA.G.EDIL s.r.l.	Laboratorio G ai sensi del D dei Trasporti	eotecnico Autorizzato PR 380/01 e della circolare 7618/2010 Settore A E B - Decreto N° 131/202	0. Aut.del Ministero delle 20	infrastrutture e
laboratorio prove maleriali			Azienda Certificata UNI E	N ISO 9001:2015
Certificato n° 2075-21 Richiedente : Geo 3D srl	Pag. 4 di 9 del 2	20/09/2021 Accettazione n°	01454_21 del	03/09/2021
Provenienza dei Campioni	Realizzazione pista ciclabile Sondaggio: S2 Campi Note :	presso Ponte Cavallotti - Rieti one: C1 Profondità di Prelie	wo da m 3,00	am 3,50

Analisi Granulometrica

(UNICEN ISO/TS 17892-4) - Cod prova MOLAB IO624

	Data inizio	prova 03	3/09/2021		Data fine	prova 1	4/09/2021
	Peso secco i	niziale vagliatura	[g] 176,11	Pe	eso secco iniziale	sedimentazione	e [g] 68,50
Misurazio Peso secco	Diametro	Trattenuto		я	Peso secco cumulativo [g]	Diametro medio [mm]	Trattenuto cumulativo [%]
cumulativo [g]	medio [mm]	cumulativo [%]			0,95	2,000	0,5
				/	2,65	1,000	1,5
					5,48	0,850	3,11
				/	14,09	0,425	8,00
			/		18,28	0,250	10,38
					23,45	0,180	13,31
					29,15	0,150	16,55
					40,47	0,106	22,98
			/		50,90	0,075	28,91
			/	1	59,59	0,063	33,8

Tempo (sec)	Lettura areometro	Tenperatura (°C)	Correzione	Diametro medio (mm)	Trattenuto cumulativo (%)
30	28	24,4	0,5	0,0554	37,27
60	25	24,4	0,5	0,0409	44,43
360	20,0	24,4	0,5	0,0178	56,35
990	17,0	24,4	0,5	0,0111	63,51
4500	14,0	24,4	0,5	0,0054	70,66
7200	12,0	24,4	0,5	0,0044	75,43
18000	10,0	24,8	0,5	0,0028	79,73
86400	7,0	24,2	0,5	0,0013	86,88

Note :

Lesperimentatore Ricpardo Ottavi

Direttore di Laboratorio Ing. Lanfranco Zopett 2

Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

SA.G.EDIL s.r	:1.		Laboratorio Geoto ai sensi del DPR : infrastrutture e de	ecnico A 380/01 e i Traspo	utorizzato della circolare 7618/20 orti Settore A E B - 1	010. Aut.del N Decreto N° 13	Ainistero de 31/2020	elle	
laboratorio prove materi	iali					Azienda Certifi	îcata UNI E	N ISO 90	01:201
Certificato nº	2075-2	1 Pag. 6 di 9	del 20/09/2	021	Accettazione n°	01454_21	1 del	03/09/	2021
Richiedente :	Geo 3D srl								
Provenienza de	ei Campioni	Realizzazione pi	ista ciclabile press	o Ponte	e Cavallotti - Rieti				
		Sondaggio: S2 Note :	Campione:	C1	Profondità di Prel	ievo da m	3,00	am	3,50
			Risultato de	elle Pi	rove				
		(UNICEN IS	Prova di Taglio O/TS 17892-10) - C	Diretto	o (CD) a MOLAB 10636-639)			

Caratteristiche dei provini sottopos	sti a prova		
Provino	1	2	3
Altezza [cm]	2,000	2,040	2,070
Area [cm ²]	36,020	35,990	36,020
Volume [cm ³]	72,00	71,35	71,90
Peso di Volume [kN/m ³]	20,40	20,70	20,31
Contenuto d'acqua [%]	21,3	20,5	22,6
Peso di Volume dei grani [kN/m³]		-	
Indice dei vuoti		-	
Grado di saturazione [%]		3 22 7	

Data fine prova

14/09/2021

Fase di Consolidazi	one		
Provino	1	2	3
Pressione di consolidazione (kPa)	98	196	294
Cedimento (mm)	0,948	1,348	1,678
Fase di taglio			
Provino	1	2	3
Velocità di taglio mm/min	0,0042	0,0042	0,0042
Spostamento orizontale a rottura (mm)	4,04	4,03	2,27
Deformazione Verticale a rottura (%)	0,67	2,58	2,27
Contenuto finale d'acqua %	25,6	24,9	24,7
Tensione di taglio a rottura(mm)	56	113	172

Note : Lo Sperimentatore Direttore di Laboratorio Ing. Lanfranco Zonetti Riccardo Ottavi • •

Sagedil S.r.I. - Via Giovanni Falcone, 51/c 02032 Passo Corese - Fara Sabina (RI) Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

Data inizio prova

03/09/2021

SA.G.EDIL s.	r.l.		l a	Laboratorio Geo ai sensi del DPR e dei Trasporti S	tecnico A 380/01 e Settore A	outorizzato della circolare 7618/2 A E B - Decreto N° 13	010. Aut.del M 1/2020	inistero de	elle infra	strutture
laboratorio prove mate	niali						Azienda Certif	icata UNI I	EN ISO S	9001:2015
Certificato nº	2075-21	Pag. 7	di 9	del 20/09/	2021	Accettazione nº	01454_2	1 del	03/0	9/2021
Richiedente :	Geo 3D srl									
Provenienza de	ei Campioni	Realizzazion	e pista	ciclabile pres	so Pont	e Cavallotti - Rieti				
		Sondaggio: Note :	S2	Campione:	C1	Profondità di Pre	lievo da m	3,00	a m	3,50

Curve Tensione di Taglio - Spostamento e Deformazione verticale- Spostamento

Prova di Taglio Diretto (CD) (UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

SA.G.EDIL s.r.l.		Laborat ai sensi e dei Tr	orio Geotecnico del DPR 380/01 asporti Settore	o Autorizzato e della circolare 7618/2 A E B - Decreto N° 13	010. Aut.del Minis 1/2020	tero delle ir	frastrutture
laboratorio prove materiali					Azienda Certifical	ta UNI EN IS	O 9001:2015
Certificato nº 2075-21	Pag. 8 di	i9 del	20/09/2021	Accettazione n°	01454_21	del 0:	3/09/2021
Richiedente : Geo 3D srl							
Provenienza dei Campioni	Realizzazione	pista ciclab	ile presso Po	onte Cavallotti - Rieti			
	Sondaggio: S Note :	52 Can	npione: C1	I Profondità di Pro	elievo da m 3	3,00 ar	m 3,50

Prova di Taglio Diretto (CD)

(UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

Misurazioni Acquisite

	Provino 1			Provino 2				
Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)
0,00	0,00	0	0,00	0,00	0	0,00	0,00	0
0,10	0,18	24	0,09	0,47	28	0,15	0,74	50
0,27	0,26	35	0,24	0,68	49	0,33	1	81
0,47	0,29	41	0,45	0,94	64	0,53	1,21	102
0,68	0,33	42	0,65	1,16	74	0,72	1,37	117
0,89	0,34	42	0,85	1,35	81	0,90	1,49	129
1,06	0,35	42	1,04	1,52	88	1,09	1,61	137
1,25	0,36	42	1,22	1,7	92	1,28	1,72	144
1,46	0,36	43	1,43	1,86	98	1,50	1,81	150
1,68	0,36	43	1,65	1,97	101	1,69	1,88	155
1,88	0,37	44	1,85	2,07	105	1,88	1,94	159
2,05	0,38	44	2,03	2,18	108	2,08	1,99	161
2,24	0,43	45	2,22	2,24	110	2,27	2,03	164
2,44	0,44	48	2,42	2,3	110	2,49	2,07	166
2,65	0,45	50	2,64	2,35	110	2,69	2,11	166
2,85	0,46	51	2,84	2,4	110	2,88	2,14	167
3,04	0,51	53	3,02	2,44	111	3,07	2,16	168
3,24	0,55	54	3,21	2,46	111	3,28	2,18	168
3,44	0,57	55	3,42	2,48	111	3,49	2,19	168
3,65	0,59	56	3,64	2,51	111	3,69	2,21	169
3,85	0,62	56	3,85	2,54	113	3,88	2,22	171
4,04	0,67	56	4,03	2,58	113	4,08	2,23	171
4,24	0,70	56	4,22	2,6	112	4,29	2,23	170
4,44	0,74	55	4,43	2,64	112	4,50	2,26	170
4,64	0,78	54	4,64	2,65	112	4,70	2,26	171

Lo Sperimentatore Riccardo Ottevi

Direttore di Laboratorio

Sagedil S.r.l. - Via Giovanni Falcone, 51/c 02032 Passo Corese - Fara Sabina (RI)

Tel. Fax 0765 487180 - Cod. Fisc. e Partiva IVA 01072490574

SA.G.EDIL s.	r.l.		L a e	aboratorio G i sensi del DF dei Trasport	eotecnico A PR 380/01 e li Settore A	utorizzato della circolare 7618/20 E B - Decreto Nº 13	010. Aut.del Mi 1/2020	inistero di	elle infra	strutture
laboratorio prove mate	riali						Azienda Certifi	icata UNI I	EN ISO 9	9001:2015
Certificato nº	2075-21	Pag. 9	di 9	del 20/	09/2021	Accettazione n°	01454_21	1 del	03/0	9/2021
Richiedente :	Geo 3D srl						a farming di serie des			
Provenienza de	ei Campioni	Realizzazior	ne pista	ciclabile pre	esso Ponte	e Cavallotti - Rieti				
		Sondaggio: Note :	S2	Campione	e: C1	Profondità di Pre	lievo da m	3,00	a m	3,50

Prova di Taglio Diretto (CD)

(UNICEN ISO/TS 17892-10) - Cod prova MOLAB IO636-639

Misurazioni Acquisite

	Provino 1			Provino 2		Provino 3		
Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)	Spostamento orizzontale (mm)	Deformazione verticale (%)	Tensione di taglio (kPa)
4,84	0,80	54	4,84	2,69	111	4,91	2,27	172
5,04	0,84	54	5,03	2,71	112	5,11	2,27	171
5,24	0,89	54	5,23	2,75	112	5,32	2,28	171
5,45	0,92	53	5,43	2,76	112	5,53	2,29	169
5,64	0,99	52	5,64	2,79	112	5,72	2,3	171
77.		5 575 3						
(1 212)		-					:	
) .				
						2 44		
(***)								
-								
	-		-					(***)
						(-)		
								2 44 1)
							-	
				E.		(177)		
				22				
			1.000		()			
				तस्र	-			1775
			022604	222	10000	1220		100

o Sperimentatore Riccardo Ottavi

Direttore di Laboratorio Ing. Lanfranco Zonetti 0
PROVA DI TAGLIO DIRETTO

Sondaggio: Note : **S2**

Profondità di Prelievo da m 3,00 a m 3,50

C1

Campione:

LLEGATO 6 Modello geologico del sottosuolo scala 1:200

402581°; long: 12.871518 Coordinate WGS84:

PER ASCOLI

PROSPETTO

PONTE

CAVALLOT

ante

operam

SS4

SALARIA PER ROMA ➡

A

Roberto Seri *geologo* consulenze geologiche Via della **Chimica snc-R** ieti

2 kPa; $\gamma n = 19.98 \text{ kN/m}^3$

GHIAIE IN MATRICE SABBIOSA GROSSOLANA $\phi = 30.2^{\circ}$; c = 0 kPa; $\gamma n = 16.8$ kN/m³ φ = 29°; c = E ARGILLA DEBOLMENTE LIMOSA ALTERNANZE DI LIMI CON SABBIE ARGILLOSI misurata in corrispondenza della Profondità della falda a circa -1.50 m Prova geofisica MASW

 $\phi = 37^{\circ}$; c = 0 kPa; $\gamma n = 20.55 \text{ kN/m}^3$ CON LIMI DEBOLMENTE ARGILLOSE

ALTERNANZE DI LIMI CON SABBIE ARGILLOSI E SABBIE

19223 kPa (σ 392-784); 27818 kPa (σ 784-1568) 8521kPa (σ 98–196); 12413 (σ 196-392) 2791 kPa (σ 0-49); 5298 kPa (σ 49-98) Moduli edometrici:

SEZIONE PONTE CAVALLOTTI ante operam

ALLEGATO 7 I

3290586415

geologo.robertoseri@gmail.com

Prova penetrometrica DPSH

DPSH2 e S1 (Agosto-Settembre 2021)